【題目】—項(xiàng)“過關(guān)游戲”的規(guī)則規(guī)定:在第n關(guān)要拋一枚骰子n次,如果這n次拋擲所出現(xiàn)的點(diǎn)數(shù)之和大于,則算過關(guān).那么,連過前3關(guān)的概率為_______.
【答案】
【解析】
由于骰子是均勻正方體,所以,拋擲后各點(diǎn)數(shù)出現(xiàn)的可能性是相等的.
設(shè)事件A,為“第n次過關(guān)失敗”,則對立事件為“第n次過關(guān)成功”,第n次游戲中,基本事件總數(shù)為.
第1關(guān):事件所含基本事件數(shù)為2(即出現(xiàn)點(diǎn)數(shù)1和2兩種情況).
所以,過此關(guān)的概率為
.
第2關(guān):事件所含基本事件數(shù)為方程當(dāng)a分別取2、3、4時的正整數(shù)解組數(shù)之和,即6個.
所以,過此關(guān)的概率為
.
第3關(guān):事件所含基本事件數(shù)為方程當(dāng)a分別取3、4、5、6、7、8時的正整數(shù)解組數(shù)之和,即56個.
所以,過此關(guān)的概率為
.
故連過三關(guān)的概率為.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知為奇函數(shù), 為偶函數(shù),且.
(1)求及的解析式及定義域;
(2)若關(guān)于的不等式恒成立,求實(shí)數(shù)的取值范圍.
(3)如果函數(shù),若函數(shù)有兩個零點(diǎn),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知雙曲線: 的離心率, 、為其左右焦點(diǎn),點(diǎn)在上,且, , 是坐標(biāo)原點(diǎn).
(1)求雙曲線的方程;
(2)過的直線與雙曲線交于兩點(diǎn),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】近年來,霧霾日趨嚴(yán)重,霧霾的工作、生活受到了嚴(yán)重的影響,如何改善空氣質(zhì)量已成為當(dāng)今的熱點(diǎn)問題,某空氣凈化器制造廠,決定投入生產(chǎn)某型號的空氣凈化器,根據(jù)以往的生產(chǎn)銷售經(jīng)驗(yàn)得到下面有關(guān)生產(chǎn)銷售的統(tǒng)計(jì)規(guī)律,每生產(chǎn)該型號空氣凈化器(百臺),其總成本為(萬元),其中固定成本為12萬元,并且每生產(chǎn)1百臺的生產(chǎn)成本為10萬元(總成本=固定成本+生產(chǎn)成本),銷售收入(萬元)滿足,假定該產(chǎn)品銷售平衡(即生產(chǎn)的產(chǎn)品都能賣掉),根據(jù)上述統(tǒng)計(jì)規(guī)律,請完成下列問題:
(1)求利潤函數(shù)的解析式(利潤=銷售收入-總成本);
(2)工廠生產(chǎn)多少百臺產(chǎn)品時,可使利潤最多?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】中國古代十進(jìn)制的算籌計(jì)數(shù)法,在數(shù)學(xué)史上是一個偉大的創(chuàng)造,算籌實(shí)際上是一根根同長短的小木棍.如圖,是利用算籌表示數(shù)的一種方法.例如:3可表示為“”,26可表示為“”.現(xiàn)有6根算籌,據(jù)此表示方法,若算籌不能剩余,則可以用這9數(shù)字表示兩位數(shù)的個數(shù)為
A.13B.14C.15D.16
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)在橢圓上,為坐標(biāo)原點(diǎn),直線的斜率與直線的斜率乘積為.
(1)求橢圓的方程;
(2)不經(jīng)過點(diǎn)的直線(且)與橢圓交于,兩點(diǎn),關(guān)于原點(diǎn)的對稱點(diǎn)為(與點(diǎn)不重合),直線,與軸分別交于兩點(diǎn),,求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(Ⅰ)求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)當(dāng)時,若在上有零點(diǎn),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正四棱錐中,,,分別是,,的中點(diǎn),動點(diǎn)在線段上運(yùn)動時,下列四個結(jié)論中恒成立的為( ).
A.B.C.面D.面
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com