設f(x)=-x3x2+2ax,若f(x)在(,+∞)上存在單調(diào)遞增區(qū)間,則實數(shù)a的取值范圍為(  )
A.a(chǎn)>-B.a(chǎn)<-C.a(chǎn)>D.不存在
A
f′(x)=-x2+x+2a=-(x-)2+2a,
∵f(x)在(,+∞)上存在單調(diào)遞增區(qū)間,∴存在(,+∞)的子區(qū)間(m,n),使得x∈(m,n)時,f′(x)>0.
∵f′(x)在(,+∞)上單調(diào)遞減,∴f′()>0,即f′()=+2a>0,解得a>-,∴當a>-時,f(x)在(,+∞)上存在單調(diào)遞增區(qū)間.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

設函數(shù).
(1)當時,求函數(shù)的單調(diào)區(qū)間;
(2)若當,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù),若上的最小值記為.
(1)求;
(2)證明:當時,恒有.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù)
(1) 當時,討論的單調(diào)性;
(2)設,當若對任意存在 使求實數(shù)的取值范圍。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù)f(x)=xlnx-x2.
(1)當a=1時,函數(shù)y=f(x)有幾個極值點?
(2)是否存在實數(shù)a,使函數(shù)f(x)=xlnx-x2有兩個極值?若存在,求實數(shù)a的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(13分)已知函數(shù)的圖象在點處的切線垂直于軸.
(1)求實數(shù)的值;
(2)求的極值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

函數(shù)f(x)在定義域R內(nèi)可導,若f(x)=f(2-x),且當x∈(-∞,1)時,(x-1)f′(x)<0,設a=f(0),b=f,c=f(3),則a,b,c的大小關系為____________.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)
設函數(shù)R,求函數(shù)在區(qū)間上的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

若函數(shù)在區(qū)間上是單調(diào)遞增函數(shù),則實數(shù)的取值范圍是  

查看答案和解析>>

同步練習冊答案