分析 (I)利用等差數(shù)列與等比數(shù)列的通項公式可得an,Sn,再利用遞推關系可得bn.
(II)利用“裂項求和”方法即可得出.
解答 解:(I)設{an}的公比為q(q>0),則$\left\{{\begin{array}{l}{{a_1}{q^2}-{a_1}=\frac{16}{27}}\\{{a_1}q=-\frac{2}{9}}\end{array}}\right.$,
∴3q2+8q-3=0,由q>0,解得$q=\frac{1}{3}$,${a_1}=-\frac{2}{3}$,
∴${a_n}=-2×{({\frac{1}{3}})^n}$.
∵${S_n}-{S_{n-1}}=({\sqrt{S_n}+\sqrt{{S_{n-1}}}})({\sqrt{S_n}-\sqrt{{S_{n-1}}}})$=$\sqrt{S_n}+\sqrt{{S_{n-1}}}$,
又bn>0,$\sqrt{S_n}>0$,∴$\sqrt{S_n}-\sqrt{{S_{n-1}}}=1$,數(shù)列$\left\{{\sqrt{S_n}}\right\}$構成一個公差為1的等差數(shù)列,
∵$\sqrt{{S_{10}}}=10$,∴S1=1,∴$\sqrt{S_n}=n$,${S_n}={n^2}$.
當n=1,b1=S1=1,
當n≥2,bn=Sn-Sn-1=2n-1(n=1也滿足).
(II)$\frac{1}{{{b_n}{b_{n+1}}}}=\frac{1}{2}(\frac{1}{2n-1}-\frac{1}{2n+1})$,
∴Tn=$\frac{1}{2}[(1-\frac{1}{3})$+$(\frac{1}{3}-\frac{1}{5})$+…+$(\frac{1}{2n-1}-\frac{1}{2n+1})]$=$\frac{1}{2}(1-\frac{1}{2n+1})$.
∴${T_n}=\frac{n}{2n+1}$.
點評 本題考查了“裂項求和法”、等差數(shù)列與等比數(shù)列的通項公式及其求和公式、數(shù)列遞推關系,考查了推理能力與計算能力,屬于中檔題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | logab•logbc•logca=1 | B. | 函數(shù)f(x)=ex滿足f(a+b)=f(a)•f(b) | ||
C. | 函數(shù)f(x)=ex滿足f(a•b)=f(a)•f(b) | D. | 若xlog34=1,則4x+4-x=$\frac{10}{3}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 588 | B. | 480 | C. | 450 | D. | 120 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com