13.已知函數(shù)f(x)=$\frac{-2x+2}{2x-1}$,數(shù)列{an}的通項公式為${a_n}=f(\frac{n}{2017})(n∈{N^*})$,則此數(shù)列前2017項的和為-2016.

分析 函數(shù)f(x)=$\frac{-2x+2}{2x-1}$=$\frac{1}{2x-1}$-1,可得f(x)+f(1-x)=-2,f(1)=0.根據(jù)${a_n}=f(\frac{n}{2017})(n∈{N^*})$,可得此數(shù)列前2017項的和=(a1+a2016)+(a2+a2015)+…+a2017

解答 解:∵函數(shù)f(x)=$\frac{-2x+2}{2x-1}$=$\frac{1}{2x-1}$-1,
∴f(x)+f(1-x)=$\frac{1}{2x-1}$-1+$\frac{1}{2(1-x)-1}$-1=-2,f(1)=0.
${a_n}=f(\frac{n}{2017})(n∈{N^*})$,
則此數(shù)列前2017項的和=(a1+a2016)+(a2+a2015)+…+a2017
=-2×1008+0
=-2016.
故答案為:-2016.

點評 本題考查了函數(shù)性質(zhì)、數(shù)列求和、分組求和,考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.我國南宋著名數(shù)學(xué)家秦九韶發(fā)現(xiàn)了從三角形三邊求三角形面積為“三斜公式”,設(shè)△ABC三個內(nèi)角A,B,C所對的邊分別為a,b,c,面積為S,則“三斜求積”公式為:S=$\sqrt{\frac{1}{4}[{a}^{2}{c}^{2}-(\frac{{a}^{2}+{c}^{2}-^{2}}{2})]}$,若a2sinC=4sinA,(a+c)2=12+b2,則用“三斜求積”公式求得△ABC的面積為( 。
A.$\sqrt{3}$B.2C.3D.$\sqrt{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知橢圓W:$\frac{x^2}{4}+\frac{y^2}{b^2}=1$(b>0)的一個焦點坐標為$(\sqrt{3},0)$.
(Ⅰ)求橢圓W的方程和離心率;
(Ⅱ)若橢圓W與y軸交于A,B兩點(A點在B點的上方),M是橢圓上異于A,B的任意一點,過點M作MN⊥y軸于N,E為線段MN的中點,直線AE與直線y=-1交于點C,G為線段BC的中點,O為坐標原點.求∠OEG的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.在“新零售”模式的背景下,某大型零售公司為推廣線下分店,計劃在S市的A區(qū)開設(shè)分店.為了確定在該區(qū)開設(shè)分店的個數(shù),該公司對該市已開設(shè)分店的其他區(qū)的數(shù)據(jù)作了初步處理后得到下列表格.記x表示在各區(qū)開設(shè)分店的個數(shù),y表示這x個分店的年收入之和.
 x(個) 2 3 4 5 6
 y(百萬元) 2.5 3 4 4.5 6
(Ⅰ)該公司已經(jīng)過初步判斷,可用線性回歸模型擬合y與x的關(guān)系,求y關(guān)于x的線性回歸方程y=$\widehatbx+a$;
(Ⅱ)假設(shè)該公司在A區(qū)獲得的總年利潤z(單位:百萬元)與x,y之間的關(guān)系為z=y-0.05x2-1.4,請結(jié)合(Ⅰ)中的線性回歸方程,估算該公司應(yīng)在A區(qū)開設(shè)多少個分店時,才能使A區(qū)平均每個分店的年利潤最大?
參考公式:$\widehat{y}$=$\widehat$x+a,$\widehat$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{\;}({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$,a=$\overline{y}$-$\widehat$$\overline{x}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知定義在R上的函數(shù)f(x)=2|x-m|+1(m∈R)為偶函數(shù).記a=f(log22),b=f(log24),c=f(2m),則a,b,c的大小關(guān)系為(  )
A.a<b<cB.c<a<bC.a<c<bD.c<b<a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.某超市對某月(30天)每天顧客使用信用卡購物的人數(shù)進行了統(tǒng)計,得到如圖所示的樣本莖葉圖,則該樣本的中位數(shù)、眾數(shù)、極差分別是( 。
A.44,45,56B.44,43,56C.44,43,57D.45,43,57

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知k∈Z,關(guān)于x的不等式k(x+1)>$\frac{2x}{e^x}$在(0,+∞)上恒成立,則k的最小值為( 。
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.設(shè)點P(x,y)在不等式組$\left\{\begin{array}{l}x≥1\\ 2x-y≤0\\ x+y-6≤0\end{array}\right.$所表示的平面區(qū)域內(nèi),則$z=\frac{9xy}{{9{x^2}+{y^2}}}$的取值范圍為(  )
A.$[{\frac{18}{13},\frac{3}{2}}]$B.$[{\frac{45}{34},\frac{3}{2}}]$C.$[{\frac{45}{34},\frac{18}{13}}]$D.$[{\frac{18}{13},\frac{45}{34}}]$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.復(fù)數(shù)$\frac{1-i}{3+4i}$(其中i是虛數(shù)單位)在復(fù)平面內(nèi)對應(yīng)的點所在的象限為( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

同步練習(xí)冊答案