已知?jiǎng)狱c(diǎn)C到點(diǎn)A(-1,0)的距離是它到點(diǎn)B(1,0)的距離的倍.
(1)試求點(diǎn)C的軌跡方程;
(2)已知直線l經(jīng)過點(diǎn)P(0,1)且與點(diǎn)C的軌跡相切,試求直線l的方程.
1)設(shè)點(diǎn)C(x,y),則|CA|=,|CB|=.
由題意,得=×.
兩邊平方,得(x+1)2+y2=2×[(x-1)2+y2].
整理,得(x-3)2+y2=8.
故點(diǎn)C的軌跡是一個(gè)圓,其方程為(x-3)2+y2=8.
(2)由(1),得圓心為M(3,0),半徑r=2.
①若直線l的斜率不存在,則方程為x=0,圓心到直線的距離d=3≠2,故該直線與圓不相切;
②若直線l的斜率存在,設(shè)為k,則直線l的方程為y=kx+1.
由直線和圓相切,得d==2,整理,得k2+6k-7=0,解得k=1,或k=-7.故所求直線的方程為y=x+1,或y=-7x+1,即x-y+1=0或7x+y-1=0.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
2 |
1 | ||||
|
1 | ||||
|
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
1 | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
1 | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
2 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com