【題目】已知函數(shù)是定義在R上的偶函數(shù),且當(dāng)時,().
(1)當(dāng)時,求的表達(dá)式:
(2)求在區(qū)間的最大值的表達(dá)式;
(3)當(dāng)時,若關(guān)于x的方程(a,)恰有10個不同實(shí)數(shù)解,求a的取值范圍.
【答案】(1);(2);(3)
【解析】
(1)根據(jù)偶函數(shù)的特點(diǎn),可知,可得結(jié)果.
(2)采用分類討論方法,與,去掉絕對值研究函數(shù)在區(qū)間上的單調(diào)性,可得結(jié)果.
(3)畫出函數(shù)圖像,利用換元法,得出與,可轉(zhuǎn)化為兩個根為,可得,最后計(jì)算可得結(jié)果.
(1)令,則
由當(dāng)時,
所以
又函數(shù)是定義在R上的偶函數(shù),
即
所以
所以當(dāng)時,
(2)當(dāng)時,
如圖
可知函數(shù)的最大值在或處取得,
所以,
①若,此時
②若,此時;
當(dāng)時,,對稱軸為
③若,即時,則,
④若,即時,則
綜上,得
(3)當(dāng)時,
如圖
令
由的圖象可知,
當(dāng)時,方程有兩解;
當(dāng)時,方程有四解;
當(dāng)時,方程有六解;
當(dāng)時,方程有三解;
當(dāng)時,方程無解.
要使方程(a,)
恰有10個不同實(shí)數(shù)解,
則關(guān)于t的方程的一個根為1,
另一個根,設(shè),則有
則
所以a的取值范圍為.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列說法錯誤的是( )
A.命題“若,則”的逆否命題是“若,則”
B.“”是“”的充分不必要條件
C.若為假命題,則、均為假命題
D.命題:“,使得”,則非:“,”
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】我國是世界上嚴(yán)重缺水的國家,城市缺水問題較為突出,某市政府為了鼓勵居民節(jié)約用水,計(jì)劃在本市試行居民生活用水定額管理,即確定一個合理的居民月用水量標(biāo)準(zhǔn):(單位:噸),用水量不超過的部分按平價(jià)收費(fèi),超過的部分按議價(jià)收費(fèi),為了了解全布市民用用水量分布情況,通過袖樣,獲得了100位居民某年的月用水量(單位:噸),將數(shù)據(jù)按照 …… 分成9組,制成了如圖所示的頻率分布直方圖
(1)求頻率分布直方圖中的值;
(2)若該市政府看望使85%的居民每月的用水量不超過標(biāo)準(zhǔn)(噸),估計(jì)的值,并說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù).
(1)求函數(shù)的單調(diào)區(qū)間和極值;
(2)若函數(shù)在區(qū)間上存在唯一零點(diǎn),求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知曲線的極坐標(biāo)方程是,以極點(diǎn)為原點(diǎn),以極軸為軸的正半軸,取相同的單位長度,建立平面直角坐標(biāo)系,直線的參數(shù)方程為 .
(1)寫出直線的普通方程與曲線的直角坐標(biāo)方程;
(2)設(shè)曲線經(jīng)過伸縮變換得到曲線,曲線上任一點(diǎn)為,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分13分)
為回饋顧客,某商場擬通過摸球兌獎的方式對1000位顧客進(jìn)行獎勵,規(guī)定:每位顧客從一個裝有4個標(biāo)有面值的球的袋中一次性隨機(jī)摸出2個球,球上所標(biāo)的面值之和為該顧客所獲的獎勵額.
(1)若袋中所裝的4個球中有1個所標(biāo)的面值為50元,其余3個均為10元,求
①顧客所獲的獎勵額為60元的概率
②顧客所獲的獎勵額的分布列及數(shù)學(xué)期望;
(2)商場對獎勵總額的預(yù)算是60000元,并規(guī)定袋中的4個球只能由標(biāo)有面值10元和50元的兩種球組成,或標(biāo)有面值20元和40元的兩種球組成.為了使顧客得到的獎勵總額盡可能符合商場的預(yù)算且每位顧客所獲的獎勵額相對均衡,請對袋中的4個球的面值給出一個合適的設(shè)計(jì),并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】我校對高二600名學(xué)生進(jìn)行了一次知識測試,并從中抽取了部分學(xué)生的成績(滿分100分)作為樣本,繪制了下面尚未完成的頻率分布表和頻率分布直方圖.
(1)填寫頻率分布表中的空格,補(bǔ)全頻率分布直方圖,并標(biāo)出每個小矩形對應(yīng)的縱軸數(shù)據(jù);
分組 | 頻數(shù) | 頻率 |
2 | 0.04 | |
8 | 0.16 | |
10 | ________ | |
________ | ________ | |
14 | 0.28 | |
合計(jì) | ________ | 1.00 |
(2)請你估算該年級學(xué)生成績的中位數(shù);
(3)如果用分層抽樣的方法從樣本分?jǐn)?shù)在和的人中共抽取6人,再從6人中選2人,求2人分?jǐn)?shù)都在的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知,是函數(shù)(其中常數(shù))圖象上的兩個動點(diǎn),點(diǎn),若的最小值為0,則函數(shù)的最大值為__________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com