設(shè)函數(shù)
(Ⅰ)若函數(shù)處取得極小值是,求的值;  
(Ⅱ)求函數(shù)的單調(diào)遞增區(qū)間;
(Ⅲ)若函數(shù)上有且只有一個(gè)極值點(diǎn), 求實(shí)數(shù)的取值范圍.

解:(I)    .......3分  
 得           ......4分
  解得:                    ………5分
(II)  
                                 …..7分
當(dāng),即的單調(diào)遞增區(qū)間為….8分
當(dāng),即的單調(diào)遞增區(qū)間為….9分
當(dāng),即的單調(diào)遞增區(qū)間為…..10分
(Ⅲ)由題意可得:……12分
                                                
的取值范圍                                       ……14分

解析

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)f(x)是定義在[-1,1]上的奇函數(shù),且對(duì)任意的實(shí)數(shù)a,b∈[-1,1],當(dāng)a+b
≠0時(shí),都有>0.
(1)若a>b,試比較f(a)與f(b)的大小;
(2)解不等式f(x)<f(x-);
(3)如果g(x)=f(x-c)和h(x)=f(x-c2)這兩個(gè)函數(shù)的定義域的交集是空集,求c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)f(x)在(-1,1)上有定義,當(dāng)且僅當(dāng)0<x<1時(shí)f(x)<0,且對(duì)任意x、y∈(-1,1)都有f(x)+f(y)=f,試證明:
(1)f(x)為奇函數(shù);
(2)f(x)在(-1,1)上單調(diào)遞減.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知y=f(x)滿足f(n-1)=f(n)-lg an-1(n≥2,n∈N)且f(1)=-lg a,是否存在實(shí)數(shù)α,β,使f(n)=(αn2+βn-1)·lg a對(duì)任何n∈N*都成立,證明你的結(jié)論

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

某工廠生產(chǎn)某種零件,每個(gè)零件的成本為40元,出廠單價(jià)定為60元,該廠為鼓勵(lì)銷售商訂購(gòu),決定當(dāng)一次訂購(gòu)量超過(guò)100個(gè)時(shí),每多訂購(gòu)一個(gè),訂購(gòu)的全部零件的出廠單價(jià)就降低0.02元,但實(shí)際出廠單價(jià)不能低于51元.
(1)當(dāng)一次訂購(gòu)量為多少時(shí),零件的實(shí)際出廠單價(jià)恰為51元;
(2)設(shè)一次訂購(gòu)量為x個(gè),零件的實(shí)際出廠單價(jià)為P元,寫出函數(shù)P=f(x)的表達(dá)式;
(3)當(dāng)銷售商一次訂購(gòu)500個(gè)零件時(shí),該廠獲得的利潤(rùn)是多少?如果訂購(gòu)1 000個(gè),利潤(rùn)又是多少?(工廠售出一個(gè)零件的利潤(rùn)=實(shí)際出廠單價(jià)-成本

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)
(I)解不等式
(II)若不等式的解集為空集,求a的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

((本題滿分15分)
已知三個(gè)函數(shù)其中第二個(gè)函數(shù)和第三個(gè)函數(shù)中的為同一個(gè)常數(shù),且,它們各自的最小值恰好是方程的三個(gè)根.
(Ⅰ) 求證:;
(Ⅱ) 設(shè)是函數(shù)的兩個(gè)極值點(diǎn),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本題滿分14分)  
函數(shù)為常數(shù))的圖象過(guò)點(diǎn)
(Ⅰ)求的值并判斷的奇偶性;
(Ⅱ)函數(shù)在區(qū)間有意義,求實(shí)數(shù)的取值范圍;
(Ⅲ)討論關(guān)于的方程為常數(shù))的正根的個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本題滿分15分)
已知函數(shù)其中,
設(shè).
(1)求函數(shù)的定義域,判斷的奇偶性,并說(shuō)明理由;
(2)若,求使成立的的集合

查看答案和解析>>

同步練習(xí)冊(cè)答案