【題目】如圖,三棱柱中,四邊形是菱形,,二面角, .

(Ⅰ)求證:平面平面;

(Ⅱ)求二面角的余弦值.

【答案】(1)見解析(2)

【解析】試題分析:(1)先由三棱柱性質(zhì)將線面垂直轉(zhuǎn)化為,再由得線線垂直,又由是菱形得,最后根據(jù)線面垂直判定定理得線面垂直, 根據(jù)面面垂直判定定理得平面平面.(2)求二面角的大小,一般借助空間向量數(shù)量積求解,先根據(jù)條件建立空間直角坐標(biāo)系,設(shè)立各點坐標(biāo),利用方程組解出各面法向量,利用向量數(shù)量積求兩法向量夾角,最后根據(jù)二面角與法向量夾角關(guān)系求二面角.

試題解析:(1)證明:在三棱柱中,由

,則,

是菱形, 得,而,

,

故平面平面.

(2)

由題意得為正三角形,

得中點為D,連CD,BD,

,又

易得,則為二面角的平面角,

, =,所以,

所以

交點,垂足為,連

為二面角的平面角,

所以

另:建系用向量法相應(yīng)給分。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知由甲、乙兩位男生和丙、丁兩位女生組成的四人沖關(guān)小組,參加由安徽衛(wèi)視推出的大型戶外競技類活動《男生女生向前沖》.活動共有四關(guān),若四關(guān)都闖過,則闖關(guān)成功,否則落水失敗.設(shè)男生闖過一至四關(guān)的概率依次是,女生闖過一至四關(guān)的概率依次是.

(Ⅰ)求男生甲闖關(guān)失敗的概率;

(Ⅱ)設(shè)表示四人沖關(guān)小組闖關(guān)成功的人數(shù),求隨機(jī)變量的分布列和期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=sin(x﹣φ),且 f(x)dx=0,則函數(shù)f(x)的圖象的一條對稱軸是(
A.x=
B.x=
C.x=
D.x=

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)=|ex﹣a|+| ﹣1|,其中a,x∈R,e是自然對數(shù)的底數(shù),e=2.71828…
(1)當(dāng)a=0時,解不等式f(x)<2;
(2)求函數(shù)f(x)的單調(diào)增區(qū)間;
(3)設(shè)a≥ ,討論關(guān)于x的方程f(f(x))= 的解的個數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(I)討論函數(shù)的單調(diào)性,并證明當(dāng)時, ;

(Ⅱ)證明:當(dāng)時,函數(shù)有最小值,設(shè)最小值為,求函數(shù)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線 軸的交點是橢圓 的一個焦點.

(1)求橢圓的方程;

(2)若直線與橢圓交于、兩點,是否存在使得以線段為直徑的圓恰好經(jīng)過坐標(biāo)原點?若存在,求出的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】1979年,李政道博士給中國科技大學(xué)少年班出過一道智趣題:5只猴子分一堆桃子,怎么也不能分成5等份,只好先去睡覺,準(zhǔn)備第二天再分,夜里1只猴子偷偷爬起來,先吃掉一個桃子,然后將其分成5等份,藏起自己的一份就去睡覺了;第2只猴子又爬起來,將剩余的桃子吃掉一個后,也將桃子分成5等份;藏起自己的一份睡覺去了;以后的3只猴子都先后照此辦理,問:最初至少有多少個桃子?最后至少剩下多少個桃子?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知某運動員每次投籃命中的概率等于40%.現(xiàn)采用隨機(jī)模擬的方法估計該運動員三次投籃恰有兩次命中的概率:先由計算器產(chǎn)生0到9之間取整數(shù)值的隨機(jī)數(shù),指定1,2,3,4表示命中,5,6,7,8,9,0,表示不命中;再以每三個隨機(jī)數(shù)為一組,代表三次投籃的結(jié)果.經(jīng)隨機(jī)模擬產(chǎn)生了如下2-組隨機(jī)數(shù):

907 966 191 925 271 932 812 458

569 683 431 257 393 027 556 488

730 113 537 989

據(jù)此估計,該運動員三次投籃恰有兩次命中的概率為__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】近幾年來,我國許多地區(qū)經(jīng)常出現(xiàn)干旱現(xiàn)象,為抗旱經(jīng)常要進(jìn)行人工降雨,現(xiàn)由天氣預(yù)報得知,某地在未來5天的指定時間的降雨概率是:前3天均為,后2天均為,5天內(nèi)任何一天的該指定時間沒有降雨,則在當(dāng)天實行人工降雨,否則,當(dāng)天不實施人工降雨.

(1)求至少有1天需要人工降雨的概率;

(2)求不需要人工降雨的天數(shù)的分布列和期望.

查看答案和解析>>

同步練習(xí)冊答案