1.函數(shù)f(x)=sin(ωx+φ),(|φ|<$\frac{π}{2}$)的部分圖象如圖所示,則f(x)的單調(diào)遞增區(qū)間為( 。
A.(-1+4kπ,1+4kπ),k∈ZB.(-3+8kπ,1+8kπ),k∈Z
C.(-1+4k,1+4k),k∈ZD.(-3+8k,1+8k),k∈Z

分析 由周期求出ω,由五點(diǎn)法作圖求出φ的值,可得函數(shù)的解析式,再利用正弦函數(shù)的單調(diào)性,求得f(x)的增區(qū)間.

解答 解:根據(jù)函數(shù)f(x)=sin(ωx+φ),(|φ|<$\frac{π}{2}$)的部分圖象,可得$\frac{1}{4}•\frac{2π}{ω}$=3-1=2,
求得ω=$\frac{π}{4}$,再根據(jù)五點(diǎn)法作圖可得$\frac{π}{4}$•1+φ=$\frac{π}{2}$,∴φ=$\frac{π}{4}$,∴f(x)=sin($\frac{π}{4}$x+$\frac{π}{4}$).
令2kπ-$\frac{π}{2}$≤$\frac{π}{4}$x+$\frac{π}{4}$≤2kπ+$\frac{π}{2}$,求得8k-3≤x≤8k+1,
故函數(shù)的增區(qū)間為[-3+8k,1+8k],k∈Z,
故選:D.

點(diǎn)評(píng) 本題主要考查由函數(shù)y=Asin(ωx+φ)的部分圖象求解析式,由周期求出ω,由五點(diǎn)法作圖求出φ的值,正弦函數(shù)的單調(diào)性,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.如圖,網(wǎng)格紙上小正方形的邊長為1,實(shí)線畫出的是某多面體的三視圖,則該多面體的體積為(  )
A.20B.22C.24D.26

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知一個(gè)幾何體的三視圖如圖所示,則該幾何體的表面積為( 。
A.4$\sqrt{2}$+6B.4$\sqrt{2}$+8C.4$\sqrt{2}$+12D.4$\sqrt{2}$+10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.三棱錐S-ABC的所有頂點(diǎn)都在球O的表面上,SA⊥平面ABC,AB⊥AC,又SA=AB=AC=1,則球O的表面積為( 。
A.$\frac{{\sqrt{3}}}{2}π$B.$\frac{3}{2}π$C.D.12π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.設(shè)復(fù)數(shù)z滿足z(2+i)=5i,則|z-1|=(  )
A.1B.2C.$\sqrt{3}$D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知函數(shù)f(x)=axlnx+b(a,b∈R),若f(x)的圖象在x=1處的切線方程為2x-y=0,則a+b=4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知一個(gè)樣本為x,1,y,5,若該樣本的平均數(shù)為2,則它的方差的最小值為( 。
A.5B.4C.3D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.在平面區(qū)域$\left\{\begin{array}{l}{x+y-4≤0}\\{x>0}\\{y>0}\end{array}\right.$內(nèi)隨機(jī)取一點(diǎn)(a,b),則函數(shù)f(x)=ax2-4bx+1在區(qū)間[1,+∞)上是增函數(shù)的概率為( 。
A.$\frac{1}{4}$B.$\frac{1}{3}$C.$\frac{1}{2}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知a,b為實(shí)數(shù),則“a=0”是“f(x)=x2+a|x|+b為偶函數(shù)”的( 。
A.充分不必要條件B.必要不充分條件
C.充分必要條件D.既不充分也不必要條件

查看答案和解析>>

同步練習(xí)冊答案