13.向量$\overrightarrow{a}$=(m-2,m+3),$\overrightarrow$=(2m+1,m-2),若$\overrightarrow{a}$與$\overrightarrow$的夾角為銳角,則m的取值范圍是(2,+∞∪(-∞,$\frac{-11-5\sqrt{5}}{2}$ )∪( $\frac{-11+5\sqrt{5}}{2}$,-$\frac{4}{3}$).

分析 由題意可得$\overrightarrow{a}•\overrightarrow$>0,且$\overrightarrow{a}$ 與$\overrightarrow$不共線,可得 $\left\{\begin{array}{l}{(m-2)•(2m+1)+(m+3)•(m-2)>0}\\{{(m-2)}^{2}-(m+3)•(2m+1)≠0}\end{array}\right.$,由此求得m的范圍.

解答 解:向量$\overrightarrow{a}$=(m-2,m+3),$\overrightarrow$=(2m+1,m-2),若$\overrightarrow{a}$與$\overrightarrow$的夾角為銳角,
則$\overrightarrow{a}•\overrightarrow$>0,且$\overrightarrow{a}$ 與$\overrightarrow$不共線,∴$\left\{\begin{array}{l}{(m-2)•(2m+1)+(m+3)•(m-2)>0}\\{{(m-2)}^{2}-(m+3)•(2m+1)≠0}\end{array}\right.$,
∴$\left\{\begin{array}{l}{m>2}\\{3m+4>0}\\{{m}^{2}+11m-1≠0}\end{array}\right.$①,或  $\left\{\begin{array}{l}{m<2}\\{3m+4<0}\\{{m}^{2}+11m-1≠0}\end{array}\right.$②;
解①求得m>2;解②求得m<$\frac{-11-5\sqrt{5}}{2}$,或 2>m>$\frac{-11+5\sqrt{5}}{2}$,
故答案為:(2,+∞∪(-∞,$\frac{-11-5\sqrt{5}}{2}$)∪($\frac{-11+5\sqrt{5}}{2}$,-$\frac{4}{3}$).

點評 本題主要考查用兩個向量的數(shù)量積表示兩個向量的夾角,體現(xiàn)了等價轉(zhuǎn)化的數(shù)學思想,屬于中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

9.已知i是虛數(shù)單位,x,y∈R,若x+2i=y-1+yi,則x+y=3.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

4.設實數(shù)a,b滿足0≤a,b≤8,且b2=16+a2,則b-a的最大值與最小值之和為12-4$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.已知函數(shù)f(x)為偶函數(shù),當x>0時,f(x)=lnx,若$M=f(-π),N=f(e),K=f(\sqrt{5})$,則M,N,K的大小關(guān)系為(  )
A.N>M>KB.K>M>NC.M>K>ND.M>N>K

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.設雙曲線$\frac{x^2}{m}+\frac{y^2}{n}=1\;(mn<0)$的一條漸近線為y=-2x,且一個焦點與拋物線$y=\frac{1}{4}{x^2}$的焦點相同,則此雙曲線的方程為(  )
A.$\frac{5}{4}{x^2}-5{y^2}=1$B.$5{y^2}-\frac{5}{4}{x^2}=1$C.$5{x^2}-\frac{5}{4}{y^2}=1$D.$\frac{5}{4}{y^2}-5{x^2}=1$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.已知函數(shù)f(x)=alnx+x2(a∈R).
(1)當a=-4時,求函數(shù)f(x)在[1,e]上的最大值及相應的x值;
(2)當x∈(1,e)時,f(x)≥0恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.今年我校高中部在全市初三學生中進行自主招生試點,通過面試招錄35名優(yōu)秀初三畢業(yè)生,第一輪面試共有從易到難的A、B、C、D四個問題,規(guī)則如下:
(1)每位參加者都必須按問題A、B、C、D順序作答,直至答題結(jié)束;
(2)每位參加者計分器的初始分數(shù)都是100分,答對問題A加10分,答對問題B加20分,答對問題C加30分,答對問題D加60分,答錯任意一題減20分;
(3)每回答一題,計分器顯示累計分數(shù),當累計分數(shù)小于80分時,答題結(jié)束,直接淘汰出局;
(4)當累計分數(shù)大于或等于140分時,答題結(jié)束,直接進入下一輪;
(5)當答完四題,累計分數(shù)仍不足140分時,答題結(jié)束,淘汰出局.
現(xiàn)有某學生甲對問題A、B、C、D答對的概率分別為$\frac{3}{4}$、$\frac{1}{2}$、$\frac{1}{3}$、$\frac{1}{4}$,且各題回答正確與否相互之間沒有影響.
(Ⅰ)求甲同學能進入下一輪的概率;
(Ⅱ)用ξ表示甲同學本輪答題結(jié)束時答題的個數(shù),求ξ的分布列和數(shù)學期望(均值).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.已知等差數(shù)列{an}的前n項和為Sn,公差d=2,S10=120.
(1)求數(shù)列{an}的通項公式an;
(2)若${b_n}={\sqrt{3}^{{a_n}-1}}$,求數(shù)列{bn}的前n項和為Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.已知實數(shù)x,y滿足$\left\{\begin{array}{l}{x≥1}\\{x+y≤4}\\{ax+by+c≥0}\end{array}\right.$,且目標函數(shù)z=2x+y的最大值為7,最小值為1,則$\frac{4y-\frac{c}{a}}{x+\frac{c}}$的取值范圍是( 。
A.[-$\frac{1}{3}$,$\frac{10}{3}$]B.[-$\frac{1}{3}$,$\frac{8}{3}$]C.[-$\frac{2}{3}$,$\frac{14}{3}$]D.[-$\frac{2}{3}$,3]

查看答案和解析>>

同步練習冊答案