精英家教網 > 高中數學 > 題目詳情

(本小題滿分12分)如圖,已知在四棱錐中,底面是矩形,平面,,的中點, 是線段上的點.

(I)當的中點時,求證:平面;

(II)要使二面角的大小為,試確定點的位置.

 

【答案】

(I)只需證;(II)

【解析】

試題分析:【法一】(I)證明:如圖,取的中點,連接

由已知得

的中點,則,

是平行四邊形,                    ………………

平面平面

平面………………………

(II)如圖,作的延長線于.

連接,由三垂線定理得,

是二面角的平面角.即…………………

,設,

可得

故,要使要使二面角的大小為,只需………………

【法二】(I)由已知,兩兩垂直,分別以它們所在直線為軸建立空間直角坐標系

,則………………

,,,

設平面的法向量為

,

………………………………………

,得

平面,故平面…………………

(II)由已知可得平面的一個法向量為,

,設平面的法向量為

,令……………

故,要使要使二面角的大小為,只需……………

考點:線面垂直項性質定理;線面平行的判定定理;二面角。

點評:綜合法求二面角,往往需要作出平面角,這是幾何中一大難點,而用向量法求解二面角無需作出二面角的平面角,只需求出平面的法向量,經過簡單運算即可,從而體現了空間向量的巨大作用.二面角的向量求法: ①若AB、CD分別是二面的兩個半平面內與棱垂直的異面直線,則二面角的大小就是向量的夾角或補角; ②設分別是二面角的兩個面α,β的法向量,則向量的夾角(或其補角)的大小就是二面角的平面角的大小。

 

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

(文) (本小題滿分12分已知函數y=4-2
3
sinx•cosx-2sin2x(x∈R)

(1)求函數的值域和最小正周期;
(2)求函數的遞減區(qū)間.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2011•自貢三模)(本小題滿分12分>
設平面直角坐標中,O為原點,N為動點,|
ON
|=6,
ON
=
5
OM
.過點M作MM1丄y軸于M1,過N作NN1⊥x軸于點N1,
OT
=
M1M
+
N1N
,記點T的軌跡為曲線C.
(I)求曲線C的方程:
(H)已知直線L與雙曲線C:5x2-y2=36的右支相交于P、Q兩點(其中點P在第-象限).線段OP交軌跡C于A,若
OP
=3
OA
,S△PAQ=-26tan∠PAQ求直線L的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

(本小題滿分12分)已知函數,且。①求的最大值及最小值;②求的在定義域上的單調區(qū)間.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2009湖南卷文)(本小題滿分12分)

為拉動經濟增長,某市決定新建一批重點工程,分別為基礎設施工程、民生工程和產業(yè)建設工程三類,這三類工程所含項目的個數分別占總數的、、.現有3名工人獨立地從中任選一個項目參與建設.求:

(I)他們選擇的項目所屬類別互不相同的概率;    w.w.w.k.s.5.u.c.o.m    

(II)至少有1人選擇的項目屬于民生工程的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:

(本小題滿分12分)

某民營企業(yè)生產A,B兩種產品,根據市場調查和預測,A產品的利潤與投資成正比,其關系如圖1,B產品的利潤與投資的算術平方根成正比,其關系如圖2,

(注:利潤與投資單位是萬元)

(1)分別將A,B兩種產品的利潤表示為投資的函數,并寫出它們的函數關系式.(2)該企業(yè)已籌集到10萬元資金,并全部投入到A,B兩種產品的生產,問:怎樣分配這10萬元投資,才能使企業(yè)獲得最大利潤,其最大利潤為多少萬元.

查看答案和解析>>

同步練習冊答案