【題目】已知函數(shù),其中, .

(1)當(dāng) 為自然對(duì)數(shù)的底)時(shí),討論的單調(diào)性;

(2)當(dāng) 時(shí),若函數(shù)存在最大值,求的最小值.

【答案】(1)見解析;(2)

【解析】分析:(1)求導(dǎo)可得,分類討論:

①當(dāng)上是減函數(shù);

②當(dāng)時(shí),上遞減,在上遞增.

(2)當(dāng).據(jù)此可知:

①當(dāng)時(shí),無(wú)極大值,也無(wú)最大值;

②當(dāng)的極大值為,.其中即,結(jié)合導(dǎo)函數(shù)考查其單調(diào)性討論可得的最小值為,此時(shí).

詳解:(1)由題,

①當(dāng),當(dāng),上是減函數(shù);

②當(dāng),當(dāng),上是減函數(shù);

當(dāng),,上是增函數(shù).

即當(dāng)時(shí),上個(gè)遞減;

當(dāng)時(shí),上遞減,在上遞增.

(2)當(dāng),.

①當(dāng)時(shí),,,則上為增函數(shù),無(wú)極大值,也無(wú)最大值;

②當(dāng),設(shè)方程的根為,得.

,

所以上為增函數(shù),在上為減函數(shù),

的極大值為,.

,令,.

.

當(dāng)時(shí);當(dāng)時(shí),所以極小值也是最小值點(diǎn).

,即的最小值為,此時(shí).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)f(x)=-x3x2+(m2-1)x(xR),其中m>0.

(1)當(dāng)m=1時(shí),求曲線yf(x)在點(diǎn)(1,f(1))處的切線斜率;

(2)求函數(shù)的單調(diào)區(qū)間與極值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】央視傳媒為了解央視舉辦的“朗讀者”節(jié)目的收視時(shí)間情況,隨機(jī)抽取了某市名觀眾進(jìn)行調(diào)查,其中有名男觀眾和名女觀眾,將這名觀眾收視時(shí)間編成如圖所示的莖葉圖(單位:分鐘),收視時(shí)間在分鐘以上(包括分鐘)的稱為“朗讀愛好者”,收視時(shí)間在分鐘以下(不包括分鐘)的稱為“非朗讀愛好者”.

(1)若采用分層抽樣的方法從“朗讀愛好者”和“非朗讀愛好者”中隨機(jī)抽取名,再?gòu)倪@名觀眾中任選名,求至少選到名“朗讀愛好者”的概率;

(2)若從收視時(shí)間在40分鐘以上(包括40分鐘)的所有觀眾中選出男、女觀眾各1名,求選出的這兩名觀眾時(shí)間相差5分鐘以上的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】我國(guó)南北朝時(shí)間著名數(shù)學(xué)家祖暅提出了祖暅原理:“冪勢(shì)既同,則積不容異”.意思是:夾在兩平行平面間的兩個(gè)幾何體,被平行于這兩個(gè)平行平面的任何平面所載,若截得的兩個(gè)截面面積總相等,則這兩個(gè)幾何體的體積相等.為計(jì)算球的體積,構(gòu)造一個(gè)底面半徑和高都與球半徑相等的圓柱,然后再圓柱內(nèi)挖去一個(gè)以圓柱下底面圓心為頂點(diǎn),圓柱上底面為底面的圓錐,運(yùn)用祖暅原理可證明此幾何體與半球體積相等(任何一個(gè)平面所載的兩個(gè)截面面積都相等).將橢圓 軸旋轉(zhuǎn)一周后得一橄欖狀的幾何體,類比上述方法,運(yùn)用祖暅原理可求得其體積等于( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列結(jié)論中:

定義在R上的函數(shù)f(x)在區(qū)間(-∞,0]上是增函數(shù),在區(qū)間[0,+∞)上也是增函數(shù),則函數(shù)f(x)R上是增函數(shù);f(2)=f(-2),則函數(shù)f(x)不是奇函數(shù);函數(shù)y=x-0.5(0,1)上的減函數(shù);對(duì)應(yīng)法則和值域相同的函數(shù)的定義域也相同;x0是二次函數(shù)y=f(x)的零點(diǎn),m<x0<n,那么f(m)f(n)<0一定成立.

寫出上述所有正確結(jié)論的序號(hào):_____.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知三棱柱ABCA1B1C1,側(cè)面ABB1A1為菱形,側(cè)面ACC1A1為正方形,側(cè)面ABB1A1⊥側(cè)面ACC1A1

1)求證:A1B⊥平面AB1C;

2)若AB2,∠ABB160°,求三棱錐C1COB1的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)當(dāng)時(shí),求滿足的值;

(2)若函數(shù)是定義在上的奇函數(shù).

①存在,使得不等式有解,求實(shí)數(shù)的取值范圍;

②若函數(shù)滿足,若對(duì)任意,不等式恒成立,求實(shí)數(shù)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】函數(shù)y=的圖象與函數(shù)y=2sinπx(﹣3≤x≤5)的圖象所有交點(diǎn)的橫坐標(biāo)之和等于( )

A.2 B.4 C.6 D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖是某神奇“黃金數(shù)學(xué)草”的生長(zhǎng)圖.第1階段生長(zhǎng)為豎直向上長(zhǎng)為1米的枝干,第2階段在枝頭生長(zhǎng)出兩根新的枝干,新枝干的長(zhǎng)度是原來(lái)的,且與舊枝成120°,第3階段又在每個(gè)枝頭各長(zhǎng)出兩根新的枝干,新枝干的長(zhǎng)度是原來(lái)的,且與舊枝成120°,……,依次生長(zhǎng),直到永遠(yuǎn).

(1)求第3階段“黃金數(shù)學(xué)草”的高度;

(2)求第13階段“黃金數(shù)學(xué)草”的高度;

查看答案和解析>>

同步練習(xí)冊(cè)答案