【題目】如圖1,梯形中, 中點(diǎn).將沿翻折到的位置,如圖2.

)求證:平面平面;

)求直線與平面所成角的正弦值;

)設(shè)分別為的中點(diǎn),試比較三棱錐和三棱錐(圖中未畫出)的體積大小,并說明理由.

【答案】證明見解析;( ;(Ⅲ)體積相等.

【解析】試題分析:由題意,利用線面垂直的判定定理,證得平面,再利用面面垂直的判定定理,即可證得,所以平面 平面.

根據(jù)題設(shè)中的垂直關(guān)系,建立空間直角坐標(biāo)系,求出平面和平面的各自一個(gè)法向量,利用向量所成的角,即可求解線面角的正弦值.

方法一先證得平面,可得點(diǎn)到平面的距離相等,即可得到三棱錐同底等高,所以體積相等;

方法二:取中點(diǎn),連接, , ,分別得到 ,進(jìn)而證得平面,即可點(diǎn)、到平面的距離相等,所以三棱錐同底等高,所以體積相等;

試題解析:

證明:因?yàn)?/span> , , 平面

所以平面因?yàn)?/span>平面,所以平面 平面

解:在平面內(nèi)作,

平面建系如圖.

, , , . , ,

設(shè)平面的法向量為,

,, ,

所以是平面的一個(gè)方向量.

所以與平面所成角的正弦值為.

Ⅲ)解三棱錐和三棱錐的體積相等.

理由如:

方法一:由 ,,

因?yàn)?/span>平面,所以平面.

故點(diǎn)、到平面的距離相等,有三棱錐同底等高,所以體積相等.

方法二如圖,取中點(diǎn),連接 , .

因?yàn)樵?/span>, , 分別是, 的中點(diǎn),所以

因?yàn)樵谡叫?/span> , 分別是 的中點(diǎn),所以

因?yàn)?/span>, , 平面, , 平面

所以平面 平面

因?yàn)?/span>平面,所以平面

故點(diǎn)、到平面的距離相等,有三棱錐同底等高,所以體積相等.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如今我們的互聯(lián)網(wǎng)生活日益豐富,除了可以很方便地網(wǎng)購,網(wǎng)上叫外賣也開始成為不少人日常生活中不可或缺的一部分,為了解網(wǎng)絡(luò)外賣在市的普及情況, 市某調(diào)查機(jī)構(gòu)借助網(wǎng)絡(luò)進(jìn)行了關(guān)于網(wǎng)絡(luò)外賣的問卷調(diào)查,并從參與調(diào)查的網(wǎng)民中抽取了200人進(jìn)行抽樣分析,得到表格(單位:人).

1)根據(jù)表中數(shù)據(jù),能否在犯錯(cuò)誤的概率不超過0.15的前提下認(rèn)為市使用網(wǎng)絡(luò)外賣的情況與性別有關(guān)?

2)①現(xiàn)從所抽取的女網(wǎng)民中利用分層抽樣的方法再抽取5人,再從這5人中隨機(jī)選出了3人贈(zèng)送外賣優(yōu)惠券,求選出的3人中至少有2人經(jīng)常使用網(wǎng)絡(luò)外賣的概率;

②將頻率視為概率,從市所有參與調(diào)查的網(wǎng)民中隨機(jī)抽取10人贈(zèng)送禮品,記其中經(jīng)常使用網(wǎng)絡(luò)外賣的人數(shù)為,的數(shù)學(xué)期望和方差.

參考公式: ,其中.

參考數(shù)據(jù):

0.15

0.10

0.05

0.025

0.010

2.072

2.706

3.841

5.024

6.635

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】狄利克雷函數(shù)是高等數(shù)學(xué)中的一個(gè)典型函數(shù),若,則稱為狄利克雷函數(shù).對于狄利克雷函數(shù),給出下面4個(gè)命題:①對任意,都有;②對任意,都有;③對任意,都有, ;④對任意,都有.其中所有真命題的序號是

A. ①④ B. ②③ C. ①②③ D. ①③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知等比數(shù)列中, , 成等差數(shù)列;數(shù)列中的前項(xiàng)和為, .

(1)求數(shù)列的通項(xiàng)公式;

(2)求數(shù)列的前項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某協(xié)會對,兩家服務(wù)機(jī)構(gòu)進(jìn)行滿意度調(diào)查,在,兩家服務(wù)機(jī)構(gòu)提供過服務(wù)的市民中隨機(jī)抽取了人,每人分別對這兩家服務(wù)機(jī)構(gòu)進(jìn)行獨(dú)立評分,滿分均為分.整理評分?jǐn)?shù)據(jù),將分?jǐn)?shù)以為組距分成組:,,,,,得到服務(wù)機(jī)構(gòu)分?jǐn)?shù)的頻數(shù)分布表,服務(wù)機(jī)構(gòu)分?jǐn)?shù)的頻率分布直方圖:

定義市民對服務(wù)機(jī)構(gòu)評價(jià)的“滿意度指數(shù)”如下:

分?jǐn)?shù)

滿意度指數(shù)

0

1

2

(1)在抽樣的人中,求對服務(wù)機(jī)構(gòu)評價(jià)“滿意度指數(shù)”為的人數(shù);

(2)從在兩家服務(wù)機(jī)構(gòu)都提供過服務(wù)的市民中隨機(jī)抽取人進(jìn)行調(diào)查,試估計(jì)對服務(wù)機(jī)構(gòu)評價(jià)的“滿意度指數(shù)”比對服務(wù)機(jī)構(gòu)評價(jià)的“滿意度指數(shù)”高的概率;

(3)如果從,服務(wù)機(jī)構(gòu)中選擇一家服務(wù)機(jī)構(gòu),以滿意度出發(fā),你會選擇哪一家?說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

)求曲線在點(diǎn)處的切線方程;

)求證:“”是“函數(shù)有且只有一個(gè)零點(diǎn)” 的充分必要條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列的各項(xiàng)均為正數(shù),前項(xiàng)和為,且.

1)求證:數(shù)列是等差數(shù)列;

2)設(shè),求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}的首項(xiàng)a1=1,an+1 (n∈N*).

(1)證明:數(shù)列是等比數(shù)列;

(2)設(shè)bn,求數(shù)列{bn}的前n項(xiàng)和Sn.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校初三年級有名學(xué)生,隨機(jī)抽查了名學(xué)生,測試分鐘仰臥起坐的成績(次數(shù)),將數(shù)據(jù)整理后繪制成如圖所示的頻率分布直方圖.用樣本估計(jì)總體,下列結(jié)論正確的是( )

A. 該校初三年級學(xué)生分鐘仰臥起坐的次數(shù)的中位數(shù)為

B. 該校初三年級學(xué)生分鐘仰臥起坐的次數(shù)的眾數(shù)為

C. 該校初三年級學(xué)生分鐘仰臥起坐的次數(shù)超過次的人數(shù)約有

D. 該校初三年級學(xué)生分鐘仰臥起坐的次數(shù)少于次的人數(shù)約為人.

查看答案和解析>>

同步練習(xí)冊答案