10.若函數(shù)y=x2-2x-1在區(qū)間(-∞,2a-2]上是減函數(shù),則實(shí)數(shù)a的取值范圍是(  )
A.$(-∞,\frac{3}{2}]$B.$(-∞,-\frac{3}{2}]$C.$[\frac{3}{2},+∞)$D.$[-\frac{3}{2},+∞)$

分析 根據(jù)二次函數(shù)的單調(diào)性與對(duì)稱軸的關(guān)系可知區(qū)間(-∞,2a-2]在對(duì)稱軸左側(cè),列出不等式解出a.

解答 解:y=x2-2x-1的對(duì)稱軸為x=1,開(kāi)口向上,
∴y=x2-2x-1在(-∞,1]上是減函數(shù),
∴2a-2≤1,解得a≤$\frac{3}{2}$.
故選:A.

點(diǎn)評(píng) 本題考查了二次函數(shù)的單調(diào)性,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.已知f(x)為R上增函數(shù),且對(duì)任意x∈R,都有f[f(x)-3x]=4,則f(log39)=10.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.執(zhí)行如圖所示的程序框圖,輸出的結(jié)果是(  )
A.56B.36C.54D.64

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.若集合A={x∈N|x>1},B={x|x2<9}則A∩B等于( 。
A.{2}B.{2,3}C.(-3,1)D.(1,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.如圖,已知D是等腰直角三角形△ABC斜邊BC的中點(diǎn),P是平面ABC外一點(diǎn),PC⊥平面ABC,求證:AD⊥平面PBC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.當(dāng)實(shí)數(shù)m為何值時(shí),$z=\frac{{{m^2}-m-6}}{m+3}+({m^2}+5m+6)•i$,
(1)為實(shí)數(shù);  
(2)為虛數(shù);   
(3)為純虛數(shù);  
(4)復(fù)數(shù)z對(duì)應(yīng)的點(diǎn)在復(fù)平面內(nèi)的第二象限.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.設(shè)函數(shù)f(x)=log2x.
(1)設(shè)函數(shù)g(x)=f(2x+1)+kx,若函數(shù)g(x)為偶函數(shù),求實(shí)數(shù)k的值;
(2)在(1)條件下,h(x)為定義域?yàn)镽的奇函數(shù),且x>0時(shí),h(x)=2${\;}^{g(x)+\frac{1}{2}x}$-1.
(i)求h(x)的解析式;
(ii)若對(duì)任意的t∈[-1,1],h(x2+tx)≥$\frac{{h}^{3}(x)}{|h(x)|}$恒成立,求x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.曲線$y=cosx({0≤x≤\frac{3π}{2}})$與x軸所圍圖形的面積為( 。
A.4B.2C.1D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.下列各選項(xiàng)中的M與P表示同一個(gè)集合的是( 。
A.M={x∈R|x2+0.01=0},P={x|x2=0}B.M={(x,y)|y=x2,x∈R},P={y|y=x2,x∈R}
C.M={y|y=t2+1,t∈R},P={t|t=(y-1)2+1,y∈R}D.M={x|x=2k,k∈Z},P={x|x=4k+2,k∈Z}

查看答案和解析>>

同步練習(xí)冊(cè)答案