18.直線l將圓x2+y2-2x-4y=0平分,且與直線x+2y=0垂直,則直線l的方程是(  )
A.2x-y=0B.2x-y-2=0C.x+2y-3=0D.x-2y+3=0

分析 設(shè)出與已知直線垂直的直線方程,利用直線平分圓的方程,求出結(jié)果即可.

解答 解:設(shè)與直線l:x+2y=0垂直的直線方程:2x-y+b=0,
圓C:x2+y2-2x-4y=0化為(x-1)2+(y-2)2=5,圓心坐標(1,2).
因為直線平分圓,圓心在直線2x-y+b=0上,所以2×1-1×2+b=0,解得b=0,
故所求直線方程為2x-y=0.
故選A.

點評 本題是基礎(chǔ)題,考查直線與圓的位置關(guān)系,直線與直線垂直的方程的設(shè)法,考查計算能力.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

8.設(shè)AB是雙曲線Γ的實軸,點C在Γ上,且∠CAB=$\frac{π}{4}$,若AB=4,BC=$\sqrt{26}$,則雙曲線的焦距是4$\sqrt{6}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.已知α為第二象限的角,sinα=$\frac{1}{2}$,β為第一象限的角,cosβ=$\frac{3}{5}$. 則tan(2α-β)的值為(  )
A.$\frac{{48+25\sqrt{3}}}{39}$B.$\frac{{48-25\sqrt{3}}}{39}$C.$-\frac{{48+25\sqrt{3}}}{39}$D.$-\frac{{48-25\sqrt{3}}}{39}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.已知函數(shù)f(x)=$\left\{\begin{array}{l}a{x^2}+3,x≥0\\({a+2}){e^{ax}},x<0\end{array}$為R上的單調(diào)函數(shù),則實數(shù)a的取值范圍是( 。
A.[-1,0)B.(0,1]C.(-2,0)D.(-∞,-2)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.設(shè)函數(shù)f(x)=lnx-x+1.
(Ⅰ)分析f(x)的單調(diào)性;
(Ⅱ)證明:當x∈(1,+∞)時,1<$\frac{x-1}{lnx}$<x.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.已知函數(shù)f(x)=x2eax,x∈R,其中e=2.71828…,常數(shù)a∈R
(1)討論f(x)的單調(diào)性;
(2)若對于任意的a>0都有$f(x)≤{f^'}(x)+\frac{{{x^2}+ax+{a^2}+1}}{a}{e^{ax}}$成立,求實數(shù)x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.命題“$?{x_0}∈R,x_0^3-x_0^2+1>0$”的否定是( 。
A.?x∈R,x3-x2+1≤0B.$?{x_0}∈R,x_0^3-x_0^2+1<0$
C.$?{x_0}∈R,x_0^3-x_0^2+1≤0$D.$?x∈R,x_0^3-x_0^2+1>0$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.已知橢圓的中心在原點,左焦點為F1(-$\sqrt{3}$,0),且右頂點為D(2,0).設(shè)點A的坐標是(1,$\frac{1}{2}$)
(1)求該橢圓的標準方程;
(2)若P是橢圓上的動點,求線段PA的中點M的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.命題“存在實數(shù)x,y,使得x+y>1”是特稱命題.(填全稱命題或存在命題),用符號表示?x,y∈R,x+y>1..

查看答案和解析>>

同步練習冊答案