7.斜率為2,且與直線2x+y-4=0的交點恰好在x軸上的直線方程是2x-y-4=0.

分析 求出直線2x+y-4=0和x軸的交點,代入點斜式方程即可.

解答 解:直線2x+y-4=0與x軸的交點是(2,0),
故所求直線的方程是:y=2(x-2),
即2x-y-4=0,
故答案為:2x-y-4=0.

點評 本題考查了直線方程問題,熟練掌握直線的方程是解題的關(guān)鍵,本題是一道基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.函數(shù)f(x)=Acos(ωx+φ)(A>0,ω>0,-π<φ<0)的部分圖象如圖所示,為了得到g(x)=Asinωx的圖象,只需將函數(shù)y=f(x)的圖象(  )
A.向左平移$\frac{π}{6}$個單位長度B.向左平移$\frac{π}{12}$個單位長度
C.向右平移$\frac{π}{6}$個單位長度D.向右平移$\frac{π}{12}$個單位長度

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.在多面體ABCDE中,平面ABC⊥平面BCE,四邊形ABED為平行四邊形,AB=AC=BC=2,CE=1,BE=$\sqrt{5}$,O為AC的中點.
(1)求證:BO⊥AE;
(2)求平面ABC與平面ACD所成銳二面角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.2016年,某省環(huán)保部門制定了《省工業(yè)企業(yè)環(huán)境保護標準化建設(shè)基本要求及考核評分標準》,為了解本省各家企業(yè)對環(huán)保的重視情況,從中抽取了40家企業(yè)進行考核評分,考核評分均在[50,100]內(nèi),按照[50,60),[60,70),[70,80),[80,90),[90,100]的分組作出頻率分布直方圖如圖(滿分為100分).
(Ⅰ)已知該省對本省每家企業(yè)每年的環(huán)保獎勵y(單位:萬元)與考核評分x的關(guān)系式為y=$\left\{\begin{array}{l}{-7,50≤x<60}\\{0,60≤x<70}\\{3,70≤x<80}\\{6,80≤x<100}\end{array}\right.$(負值為企業(yè)上繳的罰金),試估計該省在2016年對這40家企業(yè)投放環(huán)保獎勵的平均值;
(Ⅱ)在這40家企業(yè)中,從考核評分在80分以上(含80分)的企業(yè)中隨機抽取2家企業(yè)座談環(huán)保經(jīng)驗,求抽取的2家企業(yè)全部為考核評分在[80,90)內(nèi)的企業(yè)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知數(shù)列{an}滿足an=$\left\{\begin{array}{l}{(\frac{1}{2}-a)n+1(n<6)}\\{{a}^{n-5}(n≥6)}\end{array}\right.$若對于任意的n∈N*都有an>an+1,則實數(shù)a的取值范圍是(  )
A.(0,$\frac{1}{2}$)B.($\frac{1}{2}$,$\frac{7}{12}$)C.($\frac{1}{2}$,1)D.($\frac{7}{12}$,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.如圖,已知四邊形ABCD的直觀圖是一個邊長為1的正方形,則原圖形的面積為( 。
A.$2\sqrt{2}$B.6C.8D.4$\sqrt{2}$+2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.在等比數(shù)列{an}中,${a_3}=\frac{3}{2},{S_3}=\frac{9}{2}$.
(1)求數(shù)列{an}的通項公式;
(2)設(shè)${b_n}={log_2}\frac{6}{{{a_{2n+1}}}}$,且{bn}為遞增數(shù)列,若${c_n}=\frac{1}{{{b_n}^2}}$,求證:${c_1}+{c_2}+{c_3}+…+{c_n}<\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.在一次跳傘訓(xùn)練中,甲.乙兩位學(xué)員各跳一次,設(shè)命題p是“甲降落在指定范圍”,q是“乙降落在指定范圍”,則命題“兩位學(xué)員都沒有降落在指定范圍”可表示為(  )
A.(¬p)∨(¬q)B.p∨(¬q)C.p∨qD.(¬p)∧(¬q)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.△ABC中,BC=7,AB=3,且$\frac{sinC}{sinB}$=$\frac{3}{5}$.
(1)求AC的長;
(2)求∠A的大;
(3)求△ABC的面積.

查看答案和解析>>

同步練習(xí)冊答案