10.已知復(fù)數(shù)z滿足$\frac{1-z}{1+z}=-i$,則|z|=( 。
A.1B.$\sqrt{2}$C.2D.2$\sqrt{2}$

分析 利用復(fù)數(shù)的運(yùn)算法則、模的計(jì)算公式即可得出.

解答 解:∵復(fù)數(shù)z滿足$\frac{1-z}{1+z}=-i$,
∴(1-i)z=1+i,∴(1+i)(1-i)z=(1+i)(1+i),即2z=2i.
∴z=i,
則|z|=1.
故選:A.

點(diǎn)評(píng) 本題考查了復(fù)數(shù)的運(yùn)算性質(zhì)、模的計(jì)算公式,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知奇函數(shù)y=f(x) 的定義域?yàn)椋?2,2),且f(x)在(-2,2)內(nèi)是減函數(shù),解不等式f(1-x)+f(1-3x)<0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.已知集合A={x|x2-4x+3<0},B={|x|$\frac{x-4}{2-x}$≥0},則A∩B=( 。
A.[2,3)B.(1,4)C.(2,3)D.(2,4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.執(zhí)行如圖所示的程序框圖,若輸入的a的值為-1.2,則輸出的a的值為( 。
A.-0.2B.0.2C.0.8D.1.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知向量$\overrightarrow{a}$=($\sqrt{3}$,1),$\overrightarrow$=(cosα,sinα)(α∈R)
(I)若α=-$\frac{π}{6}$,試用基底$\overrightarrow{a}$,$\overrightarrow$表示向量$\overrightarrow{c}$=(2$\sqrt{3}$,0);
(II)若$\overrightarrow{a}$⊥$\overrightarrow$,求α值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.已知集合P={x|1≤2x<4},Q={1,2,3},則P∩Q(  )
A.{1}B.{1,2}C.{2,3}D.{1,2,3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.如圖,在矩形ABCD中,AD=$\sqrt{5}$,AB=3,E、F分別為AB邊、CD邊上一點(diǎn),且AE=DF=l,現(xiàn)將矩形ABCD沿EF折起,使得平面ADFE⊥平面BCFE,連接AB、CD,則所得三棱柱ABE-DCF的側(cè)面積比原矩形ABCD的面積大約多(取$\sqrt{5}$≈2.236)( 。
A.68%B.70%C.72%D.75%

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.當(dāng)a>0,a≠1時(shí),函數(shù)f(x)=loga(x-1)+1的圖象恒過(guò)定點(diǎn)A,若點(diǎn)A在直線mx-y+n=0上,則4m+2n的最小值是(  )
A.4B.$2\sqrt{2}$C.$\sqrt{2}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.設(shè)函數(shù)f(x)=|x-1|+$\frac{1}{2}$|x-3|.
(1)作出函數(shù)圖象,并求不等式f(x)>2的解集;
(2)設(shè)g(x)=$\frac{{x}^{2}+m}{x}$,若對(duì)于任意的x1,x2∈[3,5]都有f(x1)≤g(x2)恒成立,求正實(shí)數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案