四面體A-BCD中,AB=CD=4,BC=AC=AD=BD=5,則四面體外接球的表面積為( 。
分析:分別取AB,CD的中點(diǎn)E,F(xiàn),連接相應(yīng)的線段,由條件可知,球心G在EF上,可以證明G為EF中點(diǎn),求出球的半徑,然后求出球的表面積.
解答:解:分別取AB,CD的中點(diǎn)E,F(xiàn),連接相應(yīng)的線段,由條件可知,球心G在EF上,可以證明G為EF中點(diǎn),
DE=
25-4
=
21
,DF=2,EF=
21-4
=
17
,所以GF=
EF
2
=
17
2
,
球半徑DG=
17
4
+4
=
33
4
=
33
2
,
所以外接球的表面積為4πDG2=4π×
33
4
=33π
,
故選A.
點(diǎn)評:本題考查球的內(nèi)接幾何體,球的表面積的求法,考查計(jì)算能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,四面體A-BCD中,AD⊥BD,AD⊥CD,BD⊥CD,且AD=BD=CD=2,點(diǎn)E是線段AB的中點(diǎn).
(1)求證:DE是異面直線AB與CD的公垂線;
(2)求異面直線AB與CD間的距離;
(3)求異面直線DE與BC所成的角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,若AB⊥AC,AD⊥BC于D,則
1
AD2
=
1
AB2
+
1
AC2
.在四面體A-BCD中,若AB,AC,AD兩兩垂直,AH⊥底面BCD,垂足為H,則類似的結(jié)論是什么?并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)正四面體A-BCD中,E、F分別為AC、AD的中點(diǎn),則△BEF在該四面體的面ADC上的射影可能是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在四面體A-BCD中,共頂點(diǎn)A的三條棱兩兩互相垂直,且AB=AC=1,AD=
2
若四面體的四個(gè)頂點(diǎn)在一個(gè)球面上,則B,D的球面距離為
3
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•河池模擬)一個(gè)四面體A-BCD中,AC=BD=3,AD=BC=4,AB=CD=5,那么這個(gè)四面體的外接球的表面積為( 。

查看答案和解析>>

同步練習(xí)冊答案