17.在等比數(shù)列{an}中,a2=1,a4=16,則公比為4或-4..

分析 利用等比數(shù)列的通項(xiàng)公式能求出該等比數(shù)列的公比.

解答 解:∵在等比數(shù)列{an}中,a2=1,a4=16,
∴${q}^{2}=\frac{{a}_{4}}{{a}_{2}}=\frac{16}{1}$=16,
解得q=±4.
故答案為:4或-4.

點(diǎn)評(píng) 本題考查等比數(shù)列的公比的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意等比數(shù)列的性質(zhì)的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.若(1-i)2=|1+i|2z(i為虛數(shù)單位),則復(fù)數(shù)z的實(shí)部與虛部的和為( 。
A.1B.0C.-1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.已知x,y,z均大于1,a≠0,logza=24,logya=40,log(x•y•z)a=12,求logxa.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.i是虛數(shù)單位,復(fù)數(shù)$\frac{3+i}{1-i}$的虛部為( 。
A.1+2iB.2C.2iD.-2i

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.已知點(diǎn)P(2,2)在曲線y=ax2+bx上,如果該曲線在點(diǎn)P處切線的斜率為9,那么ab=-3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.已知非零單位向量$\overrightarrow{a}$、$\overrightarrow$滿足|$\overrightarrow{a}+\overrightarrow$|=|$\overrightarrow{a}-\overrightarrow$|,則$\overrightarrow{a}$與$\overrightarrow-\overrightarrow{a}$的夾角是     (  )
A.$\frac{3π}{4}$B.$\frac{π}{3}$C.$\frac{π}{4}$D.$\frac{π}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知復(fù)數(shù)z1滿足z1•i=1+i(i為虛數(shù)單位),復(fù)數(shù)z2的虛部為2.
(Ⅰ)求z1;
(Ⅱ)若z1•z2是純虛數(shù),求z2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.如圖(1),在等腰梯形ABCD中,AB∥CD,E,F(xiàn)分別為AB和CD的中點(diǎn),且AB=EF=2,CD=6,M為BC中點(diǎn),現(xiàn)將梯形BEFC沿EF所在直線折起,使平面EFCB⊥平面EFDA,如圖(2)所示,N是線段CD上一動(dòng)點(diǎn),且CN=λND.
(Ⅰ)當(dāng)$λ=\frac{1}{2}$時(shí),求證:MN∥平面ADFE;
(Ⅱ)當(dāng)λ=1時(shí),求二面角M-NA-F的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.已知M1={第一象限角},M2={銳角}.M3={0°~90°的角},M4={小于90°的角},則(  )
A.M1=M2=M3=M4B.M1?M2?M3?M4C.M1⊆M2⊆M3⊆M4D.M2⊆M3且M2⊆M4

查看答案和解析>>

同步練習(xí)冊(cè)答案