分析 作出不等式組$\left\{{\begin{array}{l}{x-y+1≥0}\\{x+y-4≤0}\\{y≥m}\end{array}}\right.$,對(duì)應(yīng)的平面區(qū)域,利用z的幾何意義,結(jié)合目標(biāo)函數(shù)z=2x+y的最大值是最小值的差為2,建立方程關(guān)系,即可得到結(jié)論.
解答 解:作出不等式組$\left\{{\begin{array}{l}{x-y+1≥0}\\{x+y-4≤0}\\{y≥m}\end{array}}\right.$,對(duì)應(yīng)的平面區(qū)域如圖:
由z=2x+y得y=-2x+z,
平移直線y=-2x+z,
由圖象可知當(dāng)直線y=-2x+z經(jīng)過(guò)點(diǎn)A時(shí),直線的截距最大,
此時(shí)z最大,
由$\left\{\begin{array}{l}{x+y-4=0}\\{y=m}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=4-m}\\{y=m}\end{array}\right.$即A(4-m,m),
此時(shí)z=2×(4-m)+m=8-m,
當(dāng)直線y=-2x+z經(jīng)過(guò)點(diǎn)B時(shí),直線的截距最小,
此時(shí)z最小,
由$\left\{\begin{array}{l}{x-y+1=0}\\{y=m}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=m-1}\\{y=m}\end{array}\right.$,
即B(m-1,m),此時(shí)z=2×(m-1)+m=3m-2,
∵目標(biāo)函數(shù)z=2x+y的最大值是最小值的差為2,
∴8-m-3m+2=2,
即m=2.
故答案為:2
點(diǎn)評(píng) 本題主要考查線性規(guī)劃的應(yīng)用,利用數(shù)形結(jié)合是解決本題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 0 | B. | 1 | C. | 2 | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com