已知可行域
y≥0
x-y+2≥0
x+y-2≤0
的外接圓C與x軸交于點(diǎn)A1、A2,雙曲線(xiàn)E以線(xiàn)段A1A2為實(shí)軸,離心率e=
6
2
.則圓C的方程是
 
;雙曲線(xiàn)E的方程是
 
分析:根據(jù)題意,作出可行域
y≥0
x-y+2≥0
x+y-2≤0
,求出三個(gè)交點(diǎn)的坐標(biāo),分析可得這是一個(gè)等腰直角三角形的區(qū)域,由等腰直角三角形的性質(zhì),可得其外接圓的圓心與半徑,進(jìn)而可得其方程,又有圓C與x軸交于點(diǎn)A1、A2,可得A1、A2的坐標(biāo),可得a的值;且已知雙曲線(xiàn)的離心率,可得c的值,進(jìn)而有雙曲線(xiàn)的性質(zhì),可得b的值,即可得雙曲線(xiàn)的標(biāo)準(zhǔn)方程.
解答:精英家教網(wǎng)解:根據(jù)題意,作出可行域
y≥0
x-y+2≥0
x+y-2≤0

設(shè)其交點(diǎn)分別為A(0,2),B(-2,0),C(2,0);
分析可得,△ABC是等腰直角三角形,且BC是斜邊;
其外接圓的圓心在斜邊的中點(diǎn),即原點(diǎn),半徑為斜邊的一半,即2;
故這個(gè)圓的方程為x2+y2=4;
其與x軸交于點(diǎn)A1、A2,就是B、C兩點(diǎn),
則雙曲線(xiàn)E的實(shí)軸端點(diǎn)為(-2,0),(2,0);
則a=2,
其離心率e=
6
2
,故c=
6
;
則b=
2
;
其焦點(diǎn)在x軸上,
故其方程為
x2
4
-
y2
2
=1
;
故答案為:x2+y2=4;
x2
4
-
y2
2
=1
點(diǎn)評(píng):本題考查圓的方程、雙曲線(xiàn)的標(biāo)準(zhǔn)方程的求法,要求學(xué)生掌握常見(jiàn)的求法,如定義法、待定系數(shù)法.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2009•煙臺(tái)二模)已知可行域
y≥0
x-y+
2
≥0
x+y-
2
≤0
的外接圓C1與x軸交于點(diǎn)A1、A2,橢圓C2以線(xiàn)段A1A2為長(zhǎng)軸,離心率e=
2
2

(1)求圓C1及橢圓C2的方程
(2)設(shè)橢圓C2的右焦點(diǎn)為F,點(diǎn)P為圓C1上異于A1、A2的動(dòng)點(diǎn),過(guò)原點(diǎn)O作直線(xiàn)PF的垂線(xiàn)交直線(xiàn)x=2于點(diǎn)Q,判斷直線(xiàn)PQ與圓C1的位置關(guān)系,并給出證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知可行域
y≥0
x-
3
y+2≥0
3
x+y-2
3
≤0
的外接圓C與x軸交于點(diǎn)A1、A2,橢圓C1以線(xiàn)段A1A2為長(zhǎng)軸,離心率e=
2
2

(1)求圓C及橢圓C1的方程;
(2)設(shè)橢圓C1的右焦點(diǎn)為F,點(diǎn)P為圓C上異于A1、A2的動(dòng)點(diǎn),過(guò)原點(diǎn)O作直線(xiàn)PF的垂線(xiàn)交直線(xiàn)x=2
2
于點(diǎn)Q,判斷直線(xiàn)PQ與圓C的位置關(guān)系,并給出證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:煙臺(tái)二模 題型:解答題

已知可行域
y≥0
x-y+
2
≥0
x+y-
2
≤0
的外接圓C1與x軸交于點(diǎn)A1、A2,橢圓C2以線(xiàn)段A1A2為長(zhǎng)軸,離心率e=
2
2

(1)求圓C1及橢圓C2的方程
(2)設(shè)橢圓C2的右焦點(diǎn)為F,點(diǎn)P為圓C1上異于A1、A2的動(dòng)點(diǎn),過(guò)原點(diǎn)O作直線(xiàn)PF的垂線(xiàn)交直線(xiàn)x=2于點(diǎn)Q,判斷直線(xiàn)PQ與圓C1的位置關(guān)系,并給出證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知可行域
y≥0
x-
3
y+2≥0
3
x+y-2
3
≤0
的外接圓C與x軸交于點(diǎn)A1、A2,橢圓C1以線(xiàn)段A1A2為長(zhǎng)軸,離心率e=
2
2

(1)求圓C及橢圓C1的方程;
(2)設(shè)橢圓C1的右焦點(diǎn)為F,點(diǎn)P為圓C上異于A1、A2的動(dòng)點(diǎn),過(guò)原點(diǎn)O作直線(xiàn)PF的垂線(xiàn)交直線(xiàn)x=2
2
于點(diǎn)Q,判斷直線(xiàn)PQ與圓C的位置關(guān)系,并給出證明.

查看答案和解析>>

同步練習(xí)冊(cè)答案