【題目】已知函數(shù)f(x)=ax﹣lnx,g(x)=ex﹣ax,其中a為正實數(shù),若f(x)在(1,+∞)上無最小值,且g(x)在(1,+∞)上是單調(diào)遞增函數(shù),則實數(shù)a的取值范圍為 .
【答案】[1,e]
【解析】解:∵f(x)=ax﹣lnx,(x>0),
f′(x)=a﹣ = ,
若f(x)在(1,+∞)上無最小值,
則f(x)在(1,+∞)單調(diào),
∴f′(x)≥0在(1,+∞)上恒成立,
或f′(x)≤0在(1,+∞)上恒成立,
∴a≥ ,或a≤ ,而函數(shù)y= 在(1,+∞)上單調(diào)減,
∴x=1時,函數(shù)y取得最大值1,
∴a≥1或a≤0,而a為正實數(shù),
故a≥1①,
又∵g(x)=ex﹣ax,
∴g′(x)=ex﹣a,
∵函數(shù)g(x)=ex﹣ax在區(qū)間(1,+∞)上單調(diào)遞增,
∴函數(shù)g′(x)=ex﹣a≥0在區(qū)間(1,+∞)上恒成立,
∴a≤[ex]min在區(qū)間(1,+∞)上成立.
而ex>e,
∴a≤e②;
綜合①②,a∈[1,e],
所以答案是:[1,e].
【考點精析】根據(jù)題目的已知條件,利用利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性和函數(shù)的最大(小)值與導(dǎo)數(shù)的相關(guān)知識可以得到問題的答案,需要掌握一般的,函數(shù)的單調(diào)性與其導(dǎo)數(shù)的正負有如下關(guān)系: 在某個區(qū)間內(nèi),(1)如果,那么函數(shù)在這個區(qū)間單調(diào)遞增;(2)如果,那么函數(shù)在這個區(qū)間單調(diào)遞減;求函數(shù)在上的最大值與最小值的步驟:(1)求函數(shù)在內(nèi)的極值;(2)將函數(shù)的各極值與端點處的函數(shù)值,比較,其中最大的是一個最大值,最小的是最小值.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某生產(chǎn)廠家生產(chǎn)一種產(chǎn)品的固定成本為4萬元,并且每生產(chǎn)1百臺產(chǎn)品需增加投入0.8萬元.已知銷售收入(萬元)滿足(其中是該產(chǎn)品的月產(chǎn)量,單位:百臺),假定生產(chǎn)的產(chǎn)品都能賣掉,請完成下列問題:
(1)將利潤表示為月產(chǎn)量的函數(shù);
(2)當(dāng)月產(chǎn)量為何值時,公司所獲利潤最大?最大利潤為多少萬元?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知某幾何體的俯視圖是如圖所示的矩形,正視圖是一個底邊長為8、高為4的等腰三角形,側(cè)視圖是一個底邊長為6、高為4的等腰三角形.
(1)求該幾何體的體積;
(2)求該幾何體的表面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在中學(xué)生綜合素質(zhì)評價某個維度的測評中,分優(yōu)秀、合格、尚待改進三個等級進行學(xué)生互評.某校高一年級有男生500人,女生400人,為了了解性別對該維度測評結(jié)果的影響,采用分層抽樣方法從高一年級抽取了45名學(xué)生的測評結(jié)果,并作出頻數(shù)統(tǒng)計表如下:
表一:男生
表二:女生
(1)從表二的非優(yōu)秀學(xué)生中隨機抽取2人交談,求所選2人中恰有1人測評等級為合格的概率;
(2)由表中統(tǒng)計數(shù)據(jù)填寫下面的列聯(lián)表,并判斷是否有90%的把握認為“測評結(jié)果優(yōu)秀與性別有關(guān)”.
參考公式: ,其中.
參考數(shù)據(jù):
0.10 | 0.05 | 0.01 | |
2.706 | 3.841 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓的方程為.
(1)求過點且與圓相切的直線的方程;
(2)直線過點,且與圓交于兩點,若,求直線的方程;
(3)是圓上一動點,,若點為的中點,求動點的軌跡方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知曲線為參數(shù)),為參數(shù)).
(1)化的參數(shù)方程為普通方程,并說明它們分別表示什么曲線;
(2)若上的點對應(yīng)的參數(shù)為為上的動點,求的中點到直線為參數(shù))距離的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下圖來自古希臘數(shù)學(xué)家希波克拉底所研究的平面幾何圖形.此圖由兩個圓構(gòu)成,O為大圓圓心,線段AB為小圓直徑.△AOB的三邊所圍成的區(qū)域記為I,黑色月牙部分記為Ⅱ,兩小月牙之和(斜線部分)部分記為Ⅲ.在整個圖形中隨機取一點,此點取自Ⅰ,Ⅱ,Ⅲ的概率分別記為p1,p2,p3,則()
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知 =(cosα,sinα), =(cosβ,sinβ),0<β<α<π.
(1)若| ﹣ |= ,求證: ⊥ ;
(2)設(shè) =(0,1),若 + = ,求α,β的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)F1 , F2是雙曲線C: (a>0,b>0)的兩個焦點,P是C上一點,若|PF1|+|PF2|=6a,且△PF1F2的最小內(nèi)角為30°,則C的離心率為 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com