若直線l:y=kx-
3
與直線2x+3y-6=0的交點(diǎn)位于第一象限,則直線l的傾斜角的取值范圍是
(
π
6
π
2
)
(
π
6
,
π
2
)
分析:聯(lián)立兩直線方程到底一個(gè)二元一次方程組,求出方程組的解集即可得到交點(diǎn)的坐標(biāo),根據(jù)交點(diǎn)在第一象限得到橫縱坐標(biāo)都大于0,聯(lián)立得到關(guān)于k的不等式組,求出不等式組的解集即可得到k的范圍,然后根據(jù)直線的傾斜角的正切值等于斜率k,根據(jù)正切函數(shù)圖象得到傾斜角的范圍.
解答:解:聯(lián)立兩直線方程得:
y=kx-
3
2x+3y-6=0②
,
將①代入②得:x=
3
3
+6
2+3k
③,把③代入①,求得y=
6k-2
3
 
2+3k
,
所以?xún)芍本的交點(diǎn)坐標(biāo)為(
3
3
+6
2+3k
,
6k-2
3
 
2+3k
),
因?yàn)閮芍本的交點(diǎn)在第一象限,所以得到
3
3
+6
2+3k
>0
,且
6k-2
3
 
2+3k
>0
,
解得:k>
3
3

設(shè)直線l的傾斜角為θ,則tanθ>
3
3
,所以θ∈(
π
6
π
2
).
故答案為:(
π
6
,
π
2
)
點(diǎn)評(píng):此題考查學(xué)生會(huì)根據(jù)兩直線的方程求出交點(diǎn)的坐標(biāo),掌握象限點(diǎn)坐標(biāo)的特點(diǎn),掌握直線傾斜角與直線斜率的關(guān)系,是一道綜合題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

6、若直線l:y=kx-1與直線x+y-1=0的交點(diǎn)對(duì)稱(chēng)的直線方程,則實(shí)數(shù)k的取值范圍是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

拋物線C:x2=2py(p>0)上一點(diǎn)P(m,4)到其焦點(diǎn)的距離為5.
(I)求p與m的值;
(II)若直線l:y=kx-1與拋物線C相交于A、B兩點(diǎn),l1、l2分別是該拋物線在A、B兩點(diǎn)處的切線,M、N分別是l1、l2與該拋物線的準(zhǔn)線交點(diǎn),求證:|
AM
+
BN
|>4
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知雙曲線C的漸近線為y=±
3
3
x且過(guò)點(diǎn)M(
6
,1).
(1)求雙曲線C的方程;
(2)若直線l:y=kx+m,(m≠0)與雙曲線C相交于A,B兩點(diǎn),D(0,-1)且有|AD|=|BD|,試求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

橢圓C:
x2
a2
+
y2
b2
=1
(a>b>0)的左、右焦點(diǎn)分別為F1、F2,右頂點(diǎn)為A,P為橢圓C上任意一點(diǎn).已知
PF1
PF2
的最大值為3,最小值為2.
(1)求橢圓C的方程;
(2)若直線l:y=kx+m與橢圓C相交于M、N兩點(diǎn)(M、N不是左右頂點(diǎn)),且以MN為直徑的圓過(guò)點(diǎn)A.求證:直線l過(guò)定點(diǎn),并求出該定點(diǎn)的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案