【題目】設(shè)拋物線y2=4x的焦點(diǎn)為F,過(guò)點(diǎn)F的直線與拋物線交于A,B兩點(diǎn),過(guò)AB的中點(diǎn)M作準(zhǔn)線的垂線與拋物線交于點(diǎn)P,若 ,則弦長(zhǎng)|AB|等于( )
A.2
B.4
C.6
D.8
【答案】C
【解析】解:∵拋物線方程為y2=4x,
∴2p=4,p=2,可得拋物線的焦點(diǎn)為F(1,0),準(zhǔn)線為l:x=﹣1,
設(shè)A(x1 , y1),B(x2 , y2),直線AB的方程為y=k(x﹣1),
由 消去y,得k2x2﹣(2k2+4)x+k2=0,
∴x1+x2= ,x1x2=1,
∵過(guò)AB的中點(diǎn)M作準(zhǔn)線的垂線與拋物線交于點(diǎn)P,
∴設(shè)P的坐標(biāo)為(x0 , y0),可得y0= (y1+y2),
∵y1=k(x1﹣1),y2=k(x2﹣1),
∴y1+y2=k(x1+x2)﹣2k=k ﹣2k= ,
得到y(tǒng)0= = ,所以x0= = ,可得P( , ).
∵ ,∴ = ,解之得k2=2,
因此x1+x2= =4,根據(jù)拋物線的定義可得|AB|=x1+x2+p=4+2=6.
故選:C
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校高中生共有2700人,其中高一年級(jí)900人,高二年級(jí)1200人,高三年級(jí)600人,現(xiàn)采取分層抽樣法抽取容量為135的樣本,那么高一,高二,高三各年級(jí)抽取的人數(shù)分別為( )
A.45,75,15
B.45,45,45
C.30,90,15
D.45,60,30
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,曲線的參數(shù)方程為 (為參數(shù)),在以原點(diǎn)為極點(diǎn), 軸正半軸為極軸的極坐標(biāo)系中,直線的極坐標(biāo)方程為.
(1)求的普通方程和的傾斜角;
(2)設(shè)點(diǎn)和交于兩點(diǎn),求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)()的圖象在處的切線為(為自然對(duì)數(shù)的底數(shù))
(1)求的值;
(2)若,且對(duì)任意恒成立,求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)()的一個(gè)極值為.
(1)求實(shí)數(shù)的值;
(2)若函數(shù)在區(qū)間上的最大值為18,求實(shí)數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)(為常數(shù)),函數(shù),(為常數(shù),且).
(1)若函數(shù)有且只有1個(gè)零點(diǎn),求的取值的集合.
(2)當(dāng)(1)中的取最大值時(shí),求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形是梯形,四邊形是矩形,且平面平面, , , , 是線段上的動(dòng)點(diǎn).
(1)試確定點(diǎn)的位置,使平面,并說(shuō)明理由;
(2)在(1)的條件下,求平面與平面所成銳二面角的余弦值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com