【題目】用長為18 m的鋼條圍成一個長方體形狀的框架,要求長方體的長與寬之比為2:1,問該長方體的長、寬、高各為多少時,其體積最大?最大體積是多少?
【答案】解:設(shè)長方體的寬為x(m),則長為2x(m),高為
.
故長方體的體積為
從而
令V′(x)=0,解得x=0(舍去)或x=1,因此x=1.
當0<x<1時,V′(x)>0;當1<x< 時,V′(x)<0,
故在x=1處V(x)取得極大值,并且這個極大值就是V(x)的最大值。
從而最大體積V=V′(x)=9×12-6×13(m3),此時長方體的長為2 m,高為1.5 m.
答:當長方體的長為2 m時,寬為1 m,高為1.5 m時,體積最大,最大體積為3 m3。
【解析】設(shè)長方體的寬為xm,根據(jù)題意將長和寬用x表示出來,然后根據(jù)長方體體積公式用x表示出體積V,利用導數(shù)V(x)討論V(x)在定義域內(nèi)的單調(diào)性,從而求出V(x)在定義域內(nèi)的最大值及取得最大值時x的值.
科目:高中數(shù)學 來源: 題型:
【題目】如圖,已知雙曲線 =1(a>0,b>0)的左右焦點分別為F1 , F2 , |F1F2|=4,P是雙曲線右支上的一點,F(xiàn)2P與y軸交于點A,△APF1的內(nèi)切圓在邊PF1上的切點為Q,若|PQ|=1,則雙曲線的離心率是( )
A.3
B.2
C.
D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知銳角△ABC中,角A、B、C所對的邊分別為a、b、c,若a=2,b2+c2﹣bc=4,則△ABC的面積的取值范圍是( )
A.( , ]
B.(0, ]
C.( , ]
D.( , )
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,AB、CD是圓的兩條平行弦,BE∥AC,BE交CD于E、交圓于F,過A點的切線交DC的延長線于P,PC=ED=1,PA=2.
(1)求AC的長;
(2)試比較BE與EF的長度關(guān)系.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,平行四邊形ABCD中,AE:EB=1:2.
(1)求△AEF與△CDF的周長比;
(2)如果△AEF的面積等于6cm2 , 求△CDF的面積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列滿足,且.
(1)當時,寫出的通項公式(直接寫出答案,無需過程);
(2)求最小整數(shù),使得當時, 是單調(diào)遞增數(shù)列;
(3)是否存在使得是等比數(shù)列?若存在請求出;若不存在請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在2015﹣2016賽季CBA聯(lián)賽中,某隊甲、乙兩名球員在前10場比賽中投籃命中情況統(tǒng)計如下表(注:表中分數(shù) ,N表示投籃次數(shù),n表示命中次數(shù)),假設(shè)各場比賽相互獨立.
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | |
甲 | ||||||||||
乙 |
根據(jù)統(tǒng)計表的信息:
(1)從上述比賽中等可能隨機選擇一場,求甲球員在該場比賽中投籃命中率大于0.5的概率;
(2)試估計甲、乙兩名運動員在下一場比賽中恰有一人命中率超過0.5的概率;
(3)在接下來的3場比賽中,用X表示這3場比賽中乙球員命中率超過0.5的場次,試寫出X的分布列,并求X的數(shù)學期望.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com