已知函數(shù)f(x)=-x2+2mx+1,若?x0∈R,使得?x1∈[1,2]都有f(x1)<f(x0),則實數(shù)m的取值范圍是
 
考點:二次函數(shù)的性質(zhì)
專題:函數(shù)的性質(zhì)及應用
分析:函數(shù)f(x)=-x2+2mx+1開口向下、對稱軸方程為x=m的拋物線,由?x0∈R,使得?x1∈[1,2]都有f(x1)<f(x0),知m<1或m>2.
解答: 解:函數(shù)f(x)=-x2+2mx+1開口向下、對稱軸方程為x=m的拋物線,
∵?x0∈R,使得?x1∈[1,2]都有f(x1)<f(x0),
結(jié)合拋物線的形狀:
如圖示:

∴m<1或m>2,
故答案為:(-∞,1)∪(2,+∞).
點評:本題考查二次函數(shù)的性質(zhì),是基礎題.解題時要認真審題,仔細解答,注意合理地進行等價轉(zhuǎn)化.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知a,b為正實數(shù),若函數(shù)f(x)=ax3+bx+ab-1是奇函數(shù),則f(2)的最小值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知一元二次函數(shù)f(x)=x2+bx+c,且不等式x2+bx+c>0的解集為{x|x<-1或x>
1
2
},則f(10x)>0的解集為(  )
A、{x|x<-1或x>lg2}
B、{x|-1<x<lg2}
C、{x|x>-lg2}
D、{x|x<-lg2}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知二次函數(shù)f(x)頂點坐標為(1,2),且圖象經(jīng)過原點,函數(shù)g(x)=logax的圖象經(jīng)過點(
1
4
,-2).
(1)分別求出函數(shù)f(x)與g(x)的解析式;
(2)設函數(shù)F(x)=g(f(x)),求F(x)的定義域和值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,點E,F(xiàn)分別是銳角∠A兩邊上的點,AE=AF,分別以點E,F(xiàn)為圓心,以AE的長為半徑畫弧,兩弧相交于點D,連接DE,DF.
(1)請你判斷所畫四邊形的性狀,并說明理由;
(2)連接EF,若AE=8厘米,∠A=60°,求線段EF的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,拋物線y=-x2+9與x軸交于兩點A,B,點C,D在拋物線上(點C在第一象限),CD∥AB.記|CD|=2x,梯形ABCD面積為S.
(1)求面積S以x為自變量的函數(shù)式;
(2)若
|CD|
|AB|
=k其中k為常數(shù),且0<k<1,求S的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,內(nèi)角A,B,C所對的邊分別是a,b,c,已知b-c=
1
4
a,2sinB=3sinC,則cosA=( 。
A、-
1
4
B、
1
4
C、
7
8
D、
11
16

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知一次函數(shù)f(x),滿足f(1)=0,f(3)=-2,
(1)求函數(shù)解析式,作出函數(shù)f(x)的圖象;
(2)求函數(shù)f(x)在x∈[-1,2)的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)y=
x
-lnx(x>0)的單調(diào)增區(qū)間為
 

查看答案和解析>>

同步練習冊答案