兩圓C1:x2+y2+2x=0,C2:x2+y2+4y+3=0的位置關(guān)系為(  )
A、外離B、內(nèi)含C、相交D、相切
考點(diǎn):圓與圓的位置關(guān)系及其判定
專題:計(jì)算題,直線與圓
分析:化簡圓的方程為圓的標(biāo)準(zhǔn)方程求出這兩個(gè)圓的圓心和半徑,求出圓心距,再根據(jù)兩圓的圓心距C1C2與半徑和與差的關(guān)系,得出結(jié)論.
解答: 解:已知圓C1:x2+y2+2x=0,
即(x+1)2+y2=1;
圓C2:x2+y2+4y+3=0即x2+(y+2)2=1,
則圓C1(1,0),C2(0,2),r1=r2=1,
兩圓的圓心距C1C2=
1+4
=
5
,由
5
>1+1

故兩圓外離,
故選:A.
點(diǎn)評:本題主要考查圓的標(biāo)準(zhǔn)方程,兩圓的位置關(guān)系的判定方法,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=cosx-sin2x-cos2x的最大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)集合A={x|2m-1<x<m+1},若A∩R=φ,則實(shí)數(shù)m的取值范圍( 。
A、m>2B、m≥2
C、m<2D、m≤2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=kx+m,當(dāng)x∈[a1,b1]時(shí),f(x)的值域?yàn)閇a2,b2],當(dāng)x∈[a2,b2]時(shí),f(x)的值域?yàn)閇a3,b3],依此類推,一般地,當(dāng)x∈[an-1,bn-1]時(shí),f(x)的值域?yàn)閇an,bn],其中k、m為常數(shù),且a1=0,b1=1.
(Ⅰ)若k=1,求數(shù)列{an},{bn}的通項(xiàng)公式;
(Ⅱ)若k>0且k≠1,問是否存在常數(shù)m,使數(shù)列{bn}是公比不為1的等比數(shù)列?請說明理由;
(Ⅲ)或k<0,設(shè)數(shù)列{an},{bn}的前n項(xiàng)和分別為Sn,Tn,求(T1+T2+…+T2012)-(S1+S2+…+S2012)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=x2+mx-6的一個(gè)零點(diǎn)是-6,則另一個(gè)零點(diǎn)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

以初速度40m/s豎直向上拋一物體,t秒時(shí)刻的速度v=40-10t2,則此物體達(dá)到最高時(shí)的高度為( 。
A、
160
3
 m
B、
80
3
 m
C、
40
3
 m
D、
20
3
 m

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

非零向量
a
b
使得|
a
-
b
|=|
a
|+|
b
|
成立的一個(gè)充分非必要條件是( 。
A、
a
b
B、
a
+2
b
=
0
C、
a
|
a
|
=
b
|
b
|
D、
a
=
b

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求函數(shù)y=4-3cos2x-4sinx,x∈[
π
3
,π]的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知首項(xiàng)為
1
2
的等比數(shù)列{an}是遞減數(shù)列,其前n項(xiàng)和為Sn,且S1+a1,S2+a2,S3+a3成等差數(shù)列.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)已知bn=an•log2an,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

同步練習(xí)冊答案