13.圓心角為2弧度的扇形的周長為3,則此扇形的面積為$\frac{9}{16}$.

分析 根據(jù)扇形的周長求出半徑r,再根據(jù)扇形的面積公式計算即可.

解答 解:設(shè)該扇形的半徑為r,
根據(jù)題意,有l(wèi)=αr+2r,
∴3=2r+2r,
∴r=$\frac{3}{4}$,
∴S扇形=$\frac{1}{2}$αr2=$\frac{1}{2}$×2×$\frac{9}{16}$=$\frac{9}{16}$.
故答案為:$\frac{9}{16}$.

點評 本題考查了弧度制下扇形的面積及弧長公式的運用問題,是基礎(chǔ)題目.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

3.函數(shù)y=3${\;}^{-{x}^{2}+ax}$在[$\frac{1}{2}$,1]上單調(diào)遞增,則a的取值范圍為[2,+∞).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.$tanϕ=-\sqrt{3}$,ϕ為第四象限角,則cosϕ=( 。
A.$\frac{1}{2}$B.-$\frac{1}{2}$C.$\frac{{\sqrt{3}}}{2}$D.-$\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.函數(shù)$y=\sqrt{{{log}_{\frac{1}{2}}}{x^2}}$的單調(diào)遞增區(qū)間是[-1,0).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.對于原命題:“已知a,b,c∈R,若a>b,則ac2>bc2”,以及它的逆命題、否命題、逆否命題,在這4個命題中,真命題的個數(shù)為(  )
A.0個B.1個C.2個D.4個

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.已知函數(shù)f(x)=ax2+2ax+4(-3<a<0),其圖象上兩點的橫坐標為x1、x&2滿足x1<x2,且x1+x2=1+a,則由(  )
A.f(x1)<f(x2B.f(x1)=f(x2
C.f(x1)>f(x2D.f(x1)、f(x&2)的大小不確定

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

5.已知函數(shù)f(x)=x2-9,$g(x)=\frac{x}{x-3}$,那么f(x)•g(x)=x2+3x (x≠3).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.一個高為H,容積為V的魚缸的軸截面如圖所示,向魚缸里注水,若魚缸里的水面高度為h時,魚缸里的水的體積為V',則函數(shù)V'=f(h)的大致圖象可能是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.設(shè)i是虛數(shù)單位,則復(fù)數(shù)z=i(3-4i)的虛部與模的和( 。
A.8B.9C.5+3iD.5+4i

查看答案和解析>>

同步練習冊答案