1.在我國(guó)古代著名的數(shù)學(xué)專著《九章算術(shù)》里有一段敘述:今有良馬與駑馬發(fā)長(zhǎng)安至齊,良馬初日行一百零三里,日增十三里;駑馬初日行九十七里,日減半里;良馬先至齊,復(fù)還迎駑馬,九日二馬相逢,則長(zhǎng)安至齊( 。
A.1120里B.2250里C.3375里D.1125里

分析 由題意知,良馬每日行的距離成等差數(shù)列,駑馬每日行的距離成等差數(shù)列,利用等差數(shù)列的求和公式即可得出.

解答 解:由題意知,良馬每日行的距離成等差數(shù)列,
記為{an},其中a1=103,d=13;
駑馬每日行的距離成等差數(shù)列,
記為{bn},其中b1=97,d=-0.5;
設(shè)長(zhǎng)安至齊為x里,則a1+a2+…+am+b1+b2+…+bm
=103×9+$\frac{9×8×13}{2}$+97×9+$\frac{9×8×(-0.5)}{2}$=2x,解得x=1125.
故選:D.

點(diǎn)評(píng) 本題考查了等差數(shù)列的定義通項(xiàng)公式與求和公式,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.知a,b,c為三條不重合的直線,α,β,γ為三個(gè)不重合的平面:
①a∥c,b∥c⇒a∥b;
②a∥γ,b∥γ⇒a∥b;
③a∥c,c∥α⇒a∥α;
④a?α,b?α,a∥b⇒a∥α.
其中正確的命題是(  )
A.①④B.①②C.②④D.③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知雙曲線2x2-y2=1的一條弦AB的斜率為k,弦AB的中點(diǎn)為M,O為原點(diǎn),若OM的斜率為k0,則k0k=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.若直線m被兩平行線l1:x-$\sqrt{3}$y+1=0與l2:x-$\sqrt{3}$y+3=0所截得的線段的長(zhǎng)為1,則直線m的傾斜角的大小為120°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.在△ABC中,a,b,c分別為A,B,C的對(duì)邊,且a2+b2=c2-ab,則C的大小是( 。
A.120°B.90°C.60°D.30°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知等差數(shù)列{an}滿足:a2=5,a5=11,其前n項(xiàng)和為Sn
(1)求an及Sn;
(2)令bn=$\frac{4}{{{a_n}^2-1}}({n∈{N^*}})$,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知{an}為等差數(shù)列,且an+1+an+2=3n+5(n∈N*),則a1等于( 。
A.$\frac{5}{4}$B.$\frac{5}{2}$C.$\frac{7}{2}$D.$\frac{7}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.向量$\overrightarrow{a}$,$\overrightarrow$,$\overrightarrow{c}$在單位正方形網(wǎng)格中的位置如圖所示,則($\overrightarrow{a}$+$\overrightarrow$)•$\overrightarrow{c}$=-3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.不等式$\frac{2x-1}{x+2}≤3$的解集為(-∞,-7]∪(-2,+∞)..

查看答案和解析>>

同步練習(xí)冊(cè)答案