【題目】在平面直角坐標(biāo)系中,以原點(diǎn)為極點(diǎn),x軸的非負(fù)半軸為極軸,并在兩坐標(biāo)系中取相同的長度單位,若直線l的極坐標(biāo)方程是ρsin(θ+ )=2 ,且點(diǎn)P是曲線C: (θ為參數(shù))上的一個(gè)動(dòng)點(diǎn).
(Ⅰ)將直線l的方程化為直角坐標(biāo)方程;
(Ⅱ)求點(diǎn)P到直線l的距離的最大值與最小值.
【答案】解:(Ⅰ)∵直線l的極坐標(biāo)方程是ρsin(θ+ )=2 ,
∴ ,
∴ρsinθ+ρcosθ=4,
由ρsinθ=y,ρcosθ=x,得x+y﹣1=0.
∴直線l的直角坐標(biāo)方程為x+y﹣1=0.
(Ⅱ)∵點(diǎn)P是曲線C: (θ為參數(shù))上的一個(gè)動(dòng)點(diǎn),
∴P( ),
點(diǎn)P到直線l的距離d= = ,
∴點(diǎn)P到直線l的距離的最大值dmax= ,
點(diǎn)P到直線l的距離的最小值dmin= =
【解析】(Ⅰ)直線l的極坐標(biāo)方程轉(zhuǎn)化為ρsinθ+ρcosθ=4,由ρsinθ=y,ρcosθ=x,能求出直線l的直角坐標(biāo)方程.(Ⅱ)由題意P( ),從而點(diǎn)P到直線l的距離d= = ,由此能求出點(diǎn)P到直線l的距離的最大值與最小值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)f(x)的定義域?yàn)镈={x|x≠0},且對(duì)于任意x1 , x2∈D,有f(x1x2)=f(x1)+f(x2).
(1)求f(1)的值;
(2)判斷函數(shù)f(x)的奇偶性并證明;
(3)如果f(4)=3,f(x﹣2)+f(x+1)≤3,且f(x)在(0,+∞)上是增函數(shù),求實(shí)數(shù)x的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)數(shù)列{an}滿足:a1=1,an=e2an+1(n∈N*), ﹣ =n,其中符號(hào)Π表示連乘,如 i=1×2×3×4×5,則f(n)的最小值為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,三內(nèi)角A、B、C對(duì)應(yīng)的邊分別為a、b、c,且c=1,acosB+bcosA=2cosC,設(shè)h是邊AB上的高,則h的最大值為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)= sinxcosx+cos2x
(I)求函數(shù)f(x)的最小正周期;
(II)若﹣ <α<0,f(α)= ,求sin2α的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)y= sin(2x+ )﹣sinxcosx的單調(diào)減區(qū)間是( )
A.[kπ﹣ ,kπ+ ](k∈Z)
B.[kπ﹣ ,kπ﹣ ](k∈Z)
C.[kπ﹣ ,kπ+ ](k∈Z)
D.[kπ+ ,kπ+ ](k∈Z)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】Sn為數(shù)列{an}的前n項(xiàng)和,已知Sn+1=λSn+1(λ是大于0的常數(shù)),且a1=1,a3=4.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè)bn=nan , 求數(shù)列{bn}的前n項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,由直線x=a,x=a+1(a>0),y=x2及 x 軸圍成的曲邊梯形的面積介于相應(yīng)小矩形與大矩形的面積之間,即 a2< x2dx<(a+1)2 . 類比之,若對(duì)n∈N*,不等式 <A< + +…+ 恒成立,則實(shí)數(shù)A等于( )
A.ln
B.ln 2
C. ln 2
D. ln 5
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com