如圖2-5-16,P為圓O外一點(diǎn),PA、PB是圓O的兩條切線,A、B為切點(diǎn),OP與AB相交于點(diǎn)M,且點(diǎn)C是AB上一點(diǎn).求證:∠OPC=∠OCM.

圖2-5-16

思路分析:圖形中有兩條切線,故運(yùn)用切割線定理得線段和角的關(guān)系,在Rt△OPB中運(yùn)用射影定理,有OB2=OP·OM,代換其中的OB為OC,可得三角形相似,即得角的相等關(guān)系.

證明:連結(jié)OB,由切線長定理,得PA=PB,PM⊥AB,PO平分∠APB.

又PB⊥OB,在Rt△OPB中,OB2=OP·OM,∵OB=OC,∴OC2=OP·OM,即.

∴△OCP∽△OMC.∴∠OPC=∠OCM.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,設(shè)圓(x-5)2+y2=16的圓心為C,此圓和拋物線y2=px(p>0)有四個(gè)交點(diǎn),若在x軸上方的兩個(gè)交點(diǎn)為A(x1,
px1
),B(x2,
px2
)(x1<x2),坐標(biāo)原點(diǎn)為O,△AOB的面積為S.
(1)求p的取值范圍;
(2)求S關(guān)于p的函數(shù)f(p)的表達(dá)式及S的最大值;
(3)求當(dāng)S取最大值時(shí),向量
CA
CB
的夾角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•江蘇)A.[選修4-1:幾何證明選講]
如圖,AB是圓O的直徑,D,E為圓上位于AB異側(cè)的兩點(diǎn),連接BD并延長至點(diǎn)C,使BD=DC,連接AC,AE,DE.
求證:∠E=∠C.
B.[選修4-2:矩陣與變換]
已知矩陣A的逆矩陣A-1=
-
1
4
3
4
1
2
-
1
2
,求矩陣A的特征值.
C.[選修4-4:坐標(biāo)系與參數(shù)方程]
在極坐標(biāo)中,已知圓C經(jīng)過點(diǎn)P(
2
,
π
4
),圓心為直線ρsin(θ-
π
3
)=-
3
2
與極軸的交點(diǎn),求圓C的極坐標(biāo)方程.
D.[選修4-5:不等式選講]
已知實(shí)數(shù)x,y滿足:|x+y|<
1
3
,|2x-y|<
1
6
,求證:|y|<
5
18

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(06年山東卷理)下列四個(gè)命題中,真命題的序號(hào)有                  (寫出所有真命題的序號(hào)).

①將函數(shù)y=的圖象按向量y=(-1,0)平移,得到的圖象對應(yīng)的函數(shù)表達(dá)式為y=

②圓x2+y2+4x-2y+1=0與直線y=相交,所得弦長為2

③若sin(+)=,sin()=,則tancot=5

④如圖,已知正方體ABCD- A1B1C1D1,P為底面ABCD內(nèi)一動(dòng)點(diǎn),P到平面AA1D1D的距離與到直線CC1的距離相等,則P點(diǎn)的軌跡是拋物線的一部分.

(16題圖)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

多面體上,位于同一條棱兩端的頂點(diǎn)稱為相鄰的,如圖16,正方體的一個(gè)頂點(diǎn)A在平面α內(nèi),其余頂點(diǎn)在α的同側(cè),正方體上與頂點(diǎn)A相鄰的三個(gè)頂點(diǎn)到α的距離分別為1,2和4,P是正方體的其余四個(gè)頂點(diǎn)中的一個(gè),則P到平面α的距離可能是:_____________

①3  ②4  ③5  ④6  ⑤7

以上結(jié)論正確的為_____________.(寫出所有正確結(jié)論的編號(hào))

查看答案和解析>>

同步練習(xí)冊答案