【題目】如圖所示的四棱錐中,底面為矩形,平面,,M,N分別是的中點.

1)求證:平面;

2)若直線與平面所成角的余弦值為,求二面角的余弦值.

【答案】1)證明見解析(2

【解析】

1)取中點E,連接,利用平行四邊形可證,由,可證,故可證;

2)根據(jù)即為直線與平面所成的角,可求出,分別以,,x軸,y軸,z軸建立空間直角坐標系,利用向量法求二面角的大小即可.

1)證明:取中點E,連接,

因為M,N,E分別為,,的中點,

,

所以是平行四邊形,故

因為,所以

又因為,

,所以平面.

因為,E為中點,所以,

所以,

所以;.

2)因為,所以在平面內(nèi)的射影,

所以即為直線與平面所成的角,

,即,

因為,

分別以,x軸,y軸,z軸建立空間直角坐標系,

,,,則,,

設平面的法向量

,即,取,則,即

取平面的法向量,

所以,

由圖可知,二面角為銳角,

所以二面角的余弦值為.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,已知曲線(為參數(shù)),以原點為極點,軸正半軸為極軸建立極坐標系,直線的極坐標方程,點在直線上,直線與曲線交于兩點.

1)求曲線的普通方程及直線的參數(shù)方程;

2)求的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】《易·系辭上》有河出圖,洛出書之說.河圖、洛書是中國古代流傳下來的兩幅神秘圖案,蘊含了深奧的宇宙星象之理,被譽為宇宙魔方,是中華文化,陰陽術數(shù)之源.其中河圖的排列結構是一、六在后,二、七在前,三、八在左,四、九在右,五、十背中,如圖,白圈為陽數(shù),黑點為陰數(shù),若從陰數(shù)和陽數(shù)中各取一數(shù),則其差的絕對值為1的概率為(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù)

(Ⅰ)若當取得極值,求a的值及的單調區(qū)間;

(Ⅱ)若存在兩個極值點,,證明:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),

1)討論的單調性;

2)若,是函數(shù)的兩個不同零點,證明:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,直三棱柱中,,.,為鄰邊作平行四邊形,連接.

1)求證:平面;

2)線段上是否存在點,使平面與平面垂直?若存在,求出的長;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),其中為自然對數(shù)的底數(shù).

(Ⅰ)討論單調性;

(Ⅱ)當時,設函數(shù)存在兩個零點,求證:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,菱形的邊長為12,交于點,將菱形沿對角線折起,得到三棱錐,點是棱的中點,

1)求證:;

2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知直線的參數(shù)方程為為參數(shù)),以坐標原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為.

(1)求直線的普通方程和曲線的直角坐標方程;

(2)設點,直線與曲線交于兩點,求的值.

查看答案和解析>>

同步練習冊答案