【題目】為創(chuàng)建國家級文明城市,某城市號召出租車司機在高考期間至少參加一次“愛心送考”,該城市某出租車公司共200名司機,他們參加“愛心送考”的次數(shù)統(tǒng)計如圖所示.
(1)求該出租車公司的司機參加“愛心送考”的人均次數(shù);
(2)從這200名司機中任選兩人,設這兩人參加送考次數(shù)之差的絕對值為隨機變量,求的分布列及數(shù)學期望.
【答案】(1)2.3;(2)答案見解析.
【解析】試題分析:(1)人均次數(shù)等于總的“愛心送考”次數(shù)/200;(2)該公司任選兩名司機,記“這兩人中一人參加1次,另一個參加2次送考”為事件,“這兩人中一人參加2次,另一人參加3次送考”為事件,“這兩人中一人參加1次,另一人參加3次送考”為事件,“這兩人參加次數(shù)相同”為事件. ,根據(jù)事件列式求分布列和數(shù)學期望.
試題解析:由圖可知,參加送考次數(shù)為1次,2次,3次的司機人數(shù)分別為20,100,80.
(1)該出租車公司司機參加送考的人均次數(shù)為:
.
(2)從該公司任選兩名司機,記“這兩人中一人參加1次,另一個參加2次送考”為事件,“這兩人中一人參加2次,另一人參加3次送考”為事件,“這兩人中一人參加1次,另一人參加3次送考”為事件,“這兩人參加次數(shù)相同”為事件.
則,
,
.
的分布列:
0 | 1 | 2 | |
的數(shù)學期望.
科目:高中數(shù)學 來源: 題型:
【題目】一研究性學習小組對春季晝夜溫差大小與某大豆種子發(fā)芽多少之間的關系進行分析研究,他們分別記錄了4月1日至4月5日的每天晝夜溫差與實驗室每天每100顆種子的發(fā)芽數(shù),得到如下數(shù)據(jù):
日期 | 4月1日 | 4月2日 | 4月3日 | 4月4日 | 4月5日 |
溫差攝氏度 | 8 | 12 | 13 | 11 | 10 |
發(fā)芽數(shù)顆 | 18 | 26 | 30 | 25 | 20 |
該學習組所確定的研究方案是:先從這5組數(shù)據(jù)中選取2組,用剩下的3組數(shù)據(jù)求線性回歸方程,再用被選取的2組數(shù)據(jù)進行檢驗.
(1)求選取的2組數(shù)據(jù)恰好是相鄰2天的數(shù)據(jù)的概率;
(2)若選取的是4月1日與4月5日這2組數(shù)據(jù)做檢驗,請根據(jù)4月2日至4月4日這3組數(shù)據(jù)求出關于的線性回歸方程;
(3)若由線性回歸方程得到的估計數(shù)據(jù)與所選出的檢驗數(shù)據(jù)的誤差不超過2顆,則認為得到的線性回歸方程是可靠的,試問(2)所得的線性回歸方程是否可靠?
參考公式和數(shù)據(jù):,;,>
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設函數(shù).
(1)求曲線在點處的切線方程;
(2)若對恒成立,求實數(shù)的取值范圍;
(3)求整數(shù)的值,使函數(shù)在區(qū)間上有零點.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】選修4-4:極坐標與參數(shù)方程
在極坐標系下,已知圓O:和直線
(1)求圓O和直線l的直角坐標方程;
(2)當時,求直線l與圓O公共點的一個極坐標.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下列說法正確的個數(shù)是( )
①設某大學的女生體重與身高具有線性相關關系,根據(jù)一組樣本數(shù)據(jù),用最小二乘法建立的線性回歸方程為 ,則若該大學某女生身高增加,則其體重約增加;
②關于的方程的兩根可分別作為橢圓和雙曲線的離心率;
③過定圓上一定點作圓的動弦,為原點,若,則動點的軌跡為橢圓;
④已知是橢圓的左焦點,設動點在橢圓上,若直線的斜率大于,則直線(為原點)的斜率的取值范圍是.
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)求函數(shù)的值域;
(2)設, , ,求函數(shù)的最小值;
(3)對(2)中的,若不等式對于任意的時恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某汽配廠生產某種零件,每個零件的出廠單價為60元,為了鼓勵更多銷售商訂購,該廠決定當一次訂購超過100個時,每多訂購一個,訂購的全部零件的出廠單價就降低元,但實際出廠單價不低于51元.
當一次訂購量最少為多少時,零件的實際出廠單價恰好為51元?
設一次訂購量為x個,零件的實際出廠單價為p元,寫出函數(shù)的表達式.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com