17、已知函數(shù)f(x)=x3-ax2+3x,且x=3是f(x)的極值點.
(Ⅰ)求實數(shù)a的值;
(Ⅱ)求函數(shù)圖象y=f(x)在點P(1,f(1))處的切線l的方程;
(Ⅲ)求f(x)在[1,5]上的最小值和最大值.
分析:(Ⅰ)求出f′(x)并令其=0得到方程,把x=3代入求出a即可;
(Ⅱ)首先求出P點的坐標,然后根據(jù)導函數(shù)求出斜率,即可得出切線方程;
(Ⅲ)由(1)求出函數(shù)的單調(diào)區(qū)間,可以運用導數(shù)判斷函數(shù)的單調(diào)性,從而求出函數(shù)f(x)在[1,5]上的最大值和最小值.
解答:解:(Ⅰ)f'(x)=3x2-2ax+3,因為f'(3)=0,即27-6a+3=0,所以a=5(4分)
(Ⅱ) 由f(x)=x3-5x2+3x,f'(x)=3x2-10x+3,得切點P(1,-1),切線l的斜率是k=-4,于是l的方程是y-(-1)=-4(x-1)即4x+y-3=0(8分)
(Ⅲ)令f'(x)=0,x∈[1,5],解得x=3(9分)
當x變化時,f'(x)、f(x)的變化情況如下表
x 1 (1,3) 3 (3,5) 5
f'(x) - 0 +
f(x) -1 極小值
-9
15       (12分)
因此,當x=3時,f(x)在區(qū)間[1,5]上取得最小值f(3)=-9;
當x=5時,f(x)在區(qū)間[1,5]上取得最大值f(5)=15(14分)
點評:題主要考查多項式函數(shù)的導數(shù),切線方程、函數(shù)單調(diào)性的判定,函數(shù)最值,函數(shù)、方程等基礎知識,考查運算求解能力、及分析與解決問題的能力,難度較大.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)已知函數(shù)f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
π
2
)的部分圖象如圖所示,則f(x)的解析式是(  )
A、f(x)=2sin(πx+
π
6
)(x∈R)
B、f(x)=2sin(2πx+
π
6
)(x∈R)
C、f(x)=2sin(πx+
π
3
)(x∈R)
D、f(x)=2sin(2πx+
π
3
)(x∈R)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•深圳一模)已知函數(shù)f(x)=
1
3
x3+bx2+cx+d
,設曲線y=f(x)在與x軸交點處的切線為y=4x-12,f′(x)為f(x)的導函數(shù),且滿足f′(2-x)=f′(x).
(1)求f(x);
(2)設g(x)=x
f′(x)
 , m>0
,求函數(shù)g(x)在[0,m]上的最大值;
(3)設h(x)=lnf′(x),若對一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2011•上海模擬)已知函數(shù)f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)當a=1,b=2時,求f(x)的最小值;
(2)若f(a)≥2m-1對任意0<a<b恒成立,求實數(shù)m的取值范圍;
(3)設k、c>0,當a=k2,b=(k+c)2時,記f(x)=f1(x);當a=(k+c)2,b=(k+2c)2時,記f(x)=f2(x).
求證:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中數(shù)學 來源:上海模擬 題型:解答題

已知函數(shù)f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)當a=1,b=2時,求f(x)的最小值;
(2)若f(a)≥2m-1對任意0<a<b恒成立,求實數(shù)m的取值范圍;
(3)設k、c>0,當a=k2,b=(k+c)2時,記f(x)=f1(x);當a=(k+c)2,b=(k+2c)2時,記f(x)=f2(x).
求證:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中數(shù)學 來源:深圳一模 題型:解答題

已知函數(shù)f(x)=
1
3
x3+bx2+cx+d
,設曲線y=f(x)在與x軸交點處的切線為y=4x-12,f′(x)為f(x)的導函數(shù),且滿足f′(2-x)=f′(x).
(1)求f(x);
(2)設g(x)=x
f′(x)
 , m>0
,求函數(shù)g(x)在[0,m]上的最大值;
(3)設h(x)=lnf′(x),若對一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實數(shù)t的取值范圍.

查看答案和解析>>

同步練習冊答案