14.?dāng)?shù)列{an}的前n項(xiàng)和為Sn,且an+1=$\frac{{a}_{n}-1}{{a}_{n}}$,a1=2,則S2017=1010.

分析 由數(shù)列的遞推公式求出前四項(xiàng),可得數(shù)列{an}是以3為周期的數(shù)列,求出S3的值,由周期性求出S2017的值.

解答 解:由題意得,a1=2,an+1=$\frac{{a}_{n}-1}{{a}_{n}}$=1-$\frac{1}{{a}_{n}}$,
∴a2=1-$\frac{1}{2}$=$\frac{1}{2}$,a3=1-2=-1,
a4=1-(-1)=2,…,
∴數(shù)列{an}是以3為周期的數(shù)列,
又S3=2+$\frac{1}{2}$-1=$\frac{3}{2}$,2017=3×672+1,
∴S2017=672×$\frac{3}{2}$+2=1010,
故答案為:1010.

點(diǎn)評 本題考查數(shù)列遞推式的應(yīng)用,以及數(shù)列周期性的應(yīng)用,求出數(shù)列{an}的周期是解題關(guān)鍵,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知f(x)=4sinωxsin(ωx+$\frac{π}{3}$)-1(ω>0),f(x)的最小正周期為π.
(Ⅰ)當(dāng)x∈[0,$\frac{2π}{3}$]時(shí),求f(x)的最大值;
(Ⅱ)請用“五點(diǎn)作圖法”畫出f(x)在[0,π]上的圖象.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.設(shè)復(fù)數(shù)z=$\frac{2i}{1+i}$,則其共軛復(fù)數(shù)為( 。
A.-1-iB.1-iC.-1+iD.1+i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.設(shè)U=R,A={x|2x<2},B={x|log2x<0},則A∩(∁UB)=( 。
A.B.{x|x≤0}C.{x|0<x≤1}D.{x|0≤x<1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.設(shè)命題P:?n∈N,n2>2n,則¬P為( 。
A.?n∈N,n2>2nB.?n∈N,n2≤2nC.?n∈N,n2≤2nD.?n∉N,n2≤2n

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$)的部分圖象如圖所示,下列說法正確的是( 。
A.f(x)的圖象關(guān)于直線x=-$\frac{2π}{3}$對稱
B.函數(shù)f(x)在[-$\frac{π}{3}$,0]上單調(diào)遞增
C.f(x)的圖象關(guān)于點(diǎn)(-$\frac{5π}{12}$,0)對稱
D.將函數(shù)y=2sin(2x-$\frac{π}{6}$)的圖象向左平移$\frac{π}{6}$個(gè)單位得到f(x)的圖象

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知cosα=$\frac{3}{5}$,α∈(π,2π),則tan(α-$\frac{3π}{4}$)=-$\frac{1}{7}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.甲乙兩位同學(xué)進(jìn)行乒乓球比賽,甲獲勝的概率為0.4,現(xiàn)采用隨機(jī)模擬的方法估計(jì)這兩位同學(xué)打3局比賽甲恰好獲勝2局的概率:先利用計(jì)算器產(chǎn)生0到9之間取整數(shù)值的隨機(jī)數(shù),制定1,2,3,4表示甲獲勝,用5,6,7,8,9,0表示乙獲勝,再以每三個(gè)隨機(jī)數(shù)為一組,代表3局比賽的結(jié)果,經(jīng)隨機(jī)模擬產(chǎn)生了30組隨機(jī)數(shù)
102   231   146   027   590   763   245   207   310   386   350   481   337   286   139
579   684   487   370   175   772   235   246   487   569   047   008   341   287   114
據(jù)此估計(jì),這兩位同學(xué)打3局比賽甲恰好獲勝2局的概率為( 。
A.$\frac{1}{3}$B.$\frac{3}{10}$C.$\frac{2}{5}$D.$\frac{11}{30}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知f(x)=2sinx+1,則f′($\frac{π}{4}$)=$\sqrt{2}$.

查看答案和解析>>

同步練習(xí)冊答案