【題目】已知橢圓的右頂點(diǎn)為為上頂點(diǎn),點(diǎn)為橢圓上一動(dòng)點(diǎn).

1)若,求直線軸的交點(diǎn)坐標(biāo);

2)設(shè)為橢圓的右焦點(diǎn),過(guò)點(diǎn)軸垂直的直線為,的中點(diǎn)為,過(guò)點(diǎn)作直線的垂線,垂足為,求證:直線與直線的交點(diǎn)在橢圓上.

【答案】12)見(jiàn)解析

【解析】

1)直接求出直線方程,與橢圓方程聯(lián)立求出點(diǎn)坐標(biāo),從而可得直線方程,得其與軸交點(diǎn)坐標(biāo);

2)設(shè),則,求出直線的方程,從而求得兩直線的交點(diǎn)坐標(biāo),證明此交點(diǎn)在橢圓上,即此點(diǎn)坐標(biāo)適合橢圓方程.代入驗(yàn)證即可.注意分說(shuō)明.

解:本題考查直線與橢圓的位置關(guān)系的綜合,

1)由題知,,則.因?yàn)?/span>,所以,

則直線的方程為,聯(lián)立,可得

.則,直線的方程為.令,

,故直線軸的交點(diǎn)坐標(biāo)為

2)證明:因?yàn)?/span>,所以.設(shè)點(diǎn),則

設(shè)

當(dāng)時(shí),設(shè),則,此時(shí)直線軸垂直,

其直線方程為,

直線的方程為,即

在方程中,令,得,得交點(diǎn)為,顯然在橢圓上.

同理當(dāng)時(shí),交點(diǎn)也在橢圓上.

當(dāng)時(shí),可設(shè)直線的方程為,即

直線的方程為,聯(lián)立方程,

消去,化簡(jiǎn)并解得

代入中,化簡(jiǎn)得

所以兩直線的交點(diǎn)為

因?yàn)?/span>

又因?yàn)?/span>,所以,

,

所以點(diǎn)在橢圓上.

綜上所述,直線與直線的交點(diǎn)在橢圓上.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】2019年4月,甲乙兩校的學(xué)生參加了某考試機(jī)構(gòu)舉行的大聯(lián)考,現(xiàn)對(duì)這兩校參加考試的學(xué)生的數(shù)學(xué)成績(jī)進(jìn)行統(tǒng)計(jì)分析,數(shù)據(jù)統(tǒng)計(jì)顯示,考生的數(shù)學(xué)成績(jī)服從正態(tài)分布,從甲乙兩校100分及以上的試卷中用系統(tǒng)抽樣的方法各抽取了20份試卷,并將這40份試卷的得分制作成如圖所示的莖葉圖:

(1)試通過(guò)莖葉圖比較這40份試卷的兩校學(xué)生數(shù)學(xué)成績(jī)的中位數(shù);

(2)若把數(shù)學(xué)成績(jī)不低于135分的記作數(shù)學(xué)成績(jī)優(yōu)秀,根據(jù)莖葉圖中的數(shù)據(jù),判斷是否有的把握認(rèn)為數(shù)學(xué)成績(jī)?cè)?00分及以上的學(xué)生中數(shù)學(xué)成績(jī)是否優(yōu)秀與所在學(xué)校有關(guān)?

(3)從所有參加此次聯(lián)考的學(xué)生中(人數(shù)很多)任意抽取3人,記數(shù)學(xué)成績(jī)?cè)?34分以上的人數(shù)為,求的數(shù)學(xué)期望.

附:若隨機(jī)變量服從正態(tài)分布,則,

參考公式與臨界值表:,其中

0.100

0.050

0.025

0.010

0.001

2.706

3.841

5.024

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知四面體的棱長(zhǎng)滿足,,現(xiàn)將四面體放入一個(gè)主視圖為等邊三角形的圓錐中,使得四面體可以在圓錐中任意轉(zhuǎn)動(dòng),則圓錐側(cè)面積的最小值為___________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓x軸負(fù)半軸交于,離心率.

1)求橢圓C的方程;

2)設(shè)直線與橢圓C交于兩點(diǎn),連接AM,AN并延長(zhǎng)交直線x=4兩點(diǎn),若,直線MN是否恒過(guò)定點(diǎn),如果是,請(qǐng)求出定點(diǎn)坐標(biāo),如果不是,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校為了解高二年級(jí)學(xué)生某次數(shù)學(xué)考試成績(jī)的分布情況,從該年級(jí)的1120名學(xué)生中隨機(jī)抽取了100名學(xué)生的數(shù)學(xué)成績(jī),發(fā)現(xiàn)都在內(nèi)現(xiàn)將這100名學(xué)生的成績(jī)按照,,,,,分組后,得到的頻率分布直方圖如圖所示,則下列說(shuō)法正確的是  

A. 頻率分布直方圖中a的值為

B. 樣本數(shù)據(jù)低于130分的頻率為

C. 總體的中位數(shù)保留1位小數(shù)估計(jì)為

D. 總體分布在的頻數(shù)一定與總體分布在的頻數(shù)相等

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】詹姆斯·哈登(James Harden)是美國(guó)NBA當(dāng)紅球星,自2012年10月加盟休斯頓火箭隊(duì)以來(lái),逐漸成長(zhǎng)為球隊(duì)的領(lǐng)袖.2017-18賽季哈登當(dāng)選常規(guī)賽MVP(最有價(jià)值球員).

年份

2012-13

2013-14

2014-15

2015-16

2016-17

2017-18

年份代碼t

1

2

3

4

5

6

常規(guī)賽場(chǎng)均得分y

25.9

25.4

27.4

29.0

29.1

30.4

(Ⅰ)根據(jù)表中數(shù)據(jù),求y關(guān)于t的線性回歸方程,*);

(Ⅱ)根據(jù)線性回歸方程預(yù)測(cè)哈登在2019-20賽季常規(guī)賽場(chǎng)均得分.

(附)對(duì)于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二乘估計(jì)分別為:,

(參考數(shù)據(jù),計(jì)算結(jié)果保留小數(shù)點(diǎn)后一位)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】氣象意義上,從春季進(jìn)入夏季的標(biāo)志為:“連續(xù)5天的日平均溫度不低于22℃”.現(xiàn)有甲、乙、丙三地連續(xù)5天的日平均溫度的記錄數(shù)據(jù)(記錄數(shù)據(jù)都是正整數(shù)):

①甲地:5個(gè)數(shù)據(jù)的中位數(shù)為24,眾數(shù)為22;

②乙地:5個(gè)數(shù)據(jù)的中位數(shù)為27,總體均值為24;

③丙地:5個(gè)數(shù)據(jù)的中有一個(gè)數(shù)據(jù)是32,總體均值為26,總體方差為10.8;

則肯定進(jìn)入夏季的地區(qū)的有( )

A. ①②③ B. ①③ C. ②③ D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(本小題滿分12分)設(shè)函數(shù).

(Ⅰ)討論函數(shù)的單調(diào)性;

(Ⅱ)當(dāng)函數(shù)有最大值且最大值大于時(shí),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了迎接全國(guó)文明城市復(fù)檢,綿陽(yáng)某中學(xué)組織了本校1000名學(xué)生進(jìn)行社會(huì)主義核心價(jià)值觀、文明常識(shí)等內(nèi)容測(cè)試。統(tǒng)計(jì)測(cè)試成績(jī)數(shù)據(jù)得到如圖所示的頻率分布直方圖,已知,滿分100.

1)求測(cè)試分?jǐn)?shù)在的學(xué)生人數(shù);

2)求這1000名學(xué)生測(cè)試成績(jī)的平均數(shù)以及中位數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案