已知圓x2+y2=4,P(
5
,0),M為圓上任一點(diǎn),MP的垂直平分線交OM于Q,則Q的軌跡為(  )
A、圓B、橢圓C、雙曲線D、拋物線
考點(diǎn):軌跡方程
專題:計(jì)算題,圓錐曲線的定義、性質(zhì)與方程
分析:利用平面幾何中的垂直平分線知識(shí),可得|QP|-|QO|=|QM|-|QO|=|OM|=2,即可得到Q的軌跡.
解答: 解:由題意,|QM|=|QP|,
∴|QP|-|QO|=|QM|-|QO|=|OM|=2,
∴Q點(diǎn)的軌跡為以P、O為焦點(diǎn)的雙曲線的一支.
故選:C.
點(diǎn)評(píng):定義法:運(yùn)用解析幾何中一些常用定義(例如圓錐曲線的定義),可從曲線定義出發(fā)直接寫出軌跡方程,或從曲線定義出發(fā)建立關(guān)系式,從而求出軌跡方程.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若樣本x1,x2,…,xn的平均數(shù)、方差分別為
.
x
、s2,則樣本3x1+5,3x2+5,…,3xn+5的平均數(shù)、方差分別為(  )
A、
.
x
、s2
B、3
.
x
+5、s2
C、3
.
x
+5、9s2
D、3
.
x
+5、(3s+5)2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

為了解高中生作文成績(jī)與課外閱讀量之間的關(guān)系,某研究機(jī)構(gòu)隨機(jī)抽取60名高中生做問(wèn)卷調(diào)查,得到以下數(shù)據(jù):
作文成績(jī)優(yōu)秀 作文成績(jī)一般 總計(jì)
課外閱讀量較大 22 10 32
課外閱讀量一般 8 20 28
總計(jì) 30 30 60
由以上數(shù)據(jù),計(jì)算得到K2的觀測(cè)值k≈9.643,根據(jù)臨界值表,以下說(shuō)法正確的是( 。
A、在樣本數(shù)據(jù)中沒有發(fā)現(xiàn)足夠證據(jù)支持結(jié)論“作文成績(jī)優(yōu)秀與課外閱讀量大有關(guān)”
B、在犯錯(cuò)誤的概率不超過(guò)0.001的前提下認(rèn)為作文成績(jī)優(yōu)秀與課外閱讀量大有關(guān)
C、在犯錯(cuò)誤的概率不超過(guò)0.05的前提下認(rèn)為作文成績(jī)優(yōu)秀與課外閱讀量大有關(guān)
D、在犯錯(cuò)誤的概率不超過(guò)0.005的前提下認(rèn)為作文成績(jī)優(yōu)秀與課外閱讀量大有關(guān)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在復(fù)平面內(nèi),設(shè)z=1+i(i是虛數(shù)單位),則復(fù)數(shù)
2
z
+z2對(duì)應(yīng)的點(diǎn)位于(  )
A、第一象限B、第二象限
C、第三象限D、第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

將函數(shù)y=2sin(2x+
π
3
)的圖象平移后所得的圖象對(duì)應(yīng)的函數(shù)為y=cos2x,則進(jìn)行的平移是( 。
A、向右平移
π
12
個(gè)單位
B、向左平移
π
12
個(gè)單位
C、向右平移
π
6
個(gè)單位
D、向左平移
π
6
個(gè)單位

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

將6名報(bào)名參加運(yùn)動(dòng)會(huì)的同學(xué)分別安排到跳繩、接力,投籃三項(xiàng)比賽中(假設(shè)這些比賽都不設(shè)人數(shù)上限),每人只參加一項(xiàng),則共有x種不同的方案,若每項(xiàng)比賽至少要安排一人時(shí),則共有y種不同的方案,其中x+y的值為( 。
A、1269B、1206
C、1719D、756

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

工廠生產(chǎn)某種電子元件,假設(shè)生產(chǎn)一件正品,可獲利200元;生產(chǎn)一件次品,則損失100元.已知該廠制造電子元件的過(guò)程中,次品率P與日產(chǎn)量x的函數(shù)關(guān)系是P=
3x
4x+32
(x∈N*
(1)將該產(chǎn)品的日盈利額T(元)表示為日產(chǎn)量x(件)的函數(shù);
(2)為獲得最大利潤(rùn),該廠的日產(chǎn)量應(yīng)定為多少件?并求出最大的利潤(rùn)為多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知不等式
kx2+kx+6
x2+x+2
>2
對(duì)任意的x∈R恒成立,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

不等式x2-2x-a>0在x∈(1,+∞)恒成立,求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案