17.a(chǎn)=log23.5,$b={log_{\frac{1}{2}}}\frac{1}{3}$,$c=(\frac{1}{2}{)^{0.3}}$,則( 。
A.c<b<aB.a<c<bC.b<a<cD.b<c<a

分析 利用對數(shù)函數(shù)與指數(shù)函數(shù)的單調(diào)性即可得出.

解答 解:a=log23.5,$b={log_{\frac{1}{2}}}\frac{1}{3}$=log23,
∴a>b>1
$c=(\frac{1}{2}{)^{0.3}}$<1,
∴a>b>c.
故選:A.

點(diǎn)評 本題考查了對數(shù)函數(shù)與指數(shù)函數(shù)的單調(diào)性,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知a、b、c都是正數(shù),若a+b+c=1,求證:$\frac{1-a}{a}$+$\frac{1-b}$+$\frac{1-c}{c}$≥6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.下列函數(shù)中,在定義域內(nèi)是減函數(shù)的是( 。
A.f(x)=-$\frac{1}{x}$B.f(x)=$\sqrt{x}$C.f(x)=$\frac{1}{{2}^{x-1}}$D.f(x)=-tanx

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.求證:兩條平行線與同一個(gè)平面所成角相等
已知:a∥b,平面α
求證:a,b與平面α所成角相等.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知函數(shù)f(x)=ax+$\frac{x-1}$(a•b≠0).
(1)當(dāng)b=a=1時(shí),求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若函數(shù)f(x)在點(diǎn)(2,f(2))處的切線方程是y=2x-3,證明:曲線y=f(x)上任一點(diǎn)處的切線與直線x=1和直線y=x所圍成的三角形面積為定值,并求出此定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.設(shè)雙曲線$\frac{y^2}{a^2}-\frac{x^2}{6}$=1的兩個(gè)焦點(diǎn)分別為F1,F(xiàn)2,離心率為$\sqrt{3}$.
(1)求此雙曲線的漸近線l1、l2的方程;
(2)若A、B分別為l1、l2上的點(diǎn),且2|AB|=5|F1F2|,求線段AB的中點(diǎn)M的軌跡方程,并說明軌跡是什么曲線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知xy>0,若x2+4y2>(m2+3m)xy恒成立,則實(shí)數(shù)m的取值范圍是( 。
A.m≥-1或m≤-4B.m≥4或m≤-1C.-4<m<1D.-1<m<4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知實(shí)數(shù)x,y滿足2x+y=8,當(dāng)2≤x≤3時(shí),則$\frac{y}{x}$的最大值為2;最小值為$\frac{2}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.設(shè)函數(shù)f(x)=-x2+2mx-3的最大值為M,且M∈[-2,6],則m的取值范圍是(  )
A.[1,3]B.[-3,3]C.[-1,0]∪[1,3]D.[-3,-1]∪[1,3]

查看答案和解析>>

同步練習(xí)冊答案