視覺 聽覺 | 視覺記憶能力 | ||||
偏低 | 中等 | 偏高 | 超常 | ||
聽覺 記憶 能力 | 偏低 | 0 | 7 | 5 | 1 |
中等 | 1 | 8 | 3 | b | |
偏高 | 2 | a | 0 | 1 | |
超常 | 0 | 2 | 1 | 1 |
分析 (1)由表格數(shù)據(jù)可知,視覺記憶能力恰為中等且聽覺記憶能力為中等或中等以上的學(xué)生共有(10+a)人,記“視覺記憶能力恰為中等且聽覺記憶能力為中等閾 中等以上”為事件A,由等可能事件概率計算公式能求出a=6,從而得到b=2.
(2)由于從40位學(xué)生中任取3位,其中具有聽覺記憶能力或視覺記憶能力偏高或超常的學(xué)生共有24人,故概率為$\frac{3}{5}$,從而ξ~B(3,$\frac{3}{5}$),由此能求出結(jié)果.
解答 解:(1)由表格數(shù)據(jù)可知,視覺記憶能力恰為中等且聽覺記憶能力為中等或中等以上的學(xué)生共有(10+a)人,
記“視覺記憶能力恰為中等且聽覺記憶能力為中等閾 中等以上”為事件A,
則P(A)=$\frac{10+a}{40}=\frac{2}{5}$,解得a=6,
∴b=40-(32+a)=40-38=2.
∴a=6,b=2.
(2)由于從40位學(xué)生中任取3位,其中具有聽覺記憶能力或視覺記憶能力偏高或超常的學(xué)生共有24人,
故概率為$\frac{3}{5}$,
∴從該地區(qū)高二年級學(xué)生中任意抽取3人,
其中恰有k位學(xué)生具有聽覺記憶能力或視覺記憶能力偏高或超常的概率P(ξ=k)=${C}_{3}^{k}(\frac{3}{5})^{k}(\frac{2}{5})^{3-k}$,(k=0,1,2,3),
ξ的可能取值為0,1,2,3,
P(ξ=0)=($\frac{2}{5}$)3=$\frac{8}{125}$,
P(ξ=1)=${C}_{3}^{1}(\frac{3}{5})(\frac{2}{5})^{2}=\frac{36}{125}$,
P(ξ=2)=${C}_{3}^{2}(\frac{3}{5})^{2}(\frac{2}{5})=\frac{54}{125}$,
P(ξ=3)=($\frac{3}{5}$)3=$\frac{27}{125}$,
∴ξ的分布列為:
ξ | 0 | 1 | 2 | 3 |
P | $\frac{8}{125}$ | $\frac{36}{125}$ | $\frac{54}{125}$ | $\frac{27}{125}$ |
點評 本題考查概率的求法,考查離散型隨機變量的分布列和數(shù)學(xué)期望的求法,是基礎(chǔ)題,解題時要認真審題,注意二項分布的性質(zhì)的合理運用.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 向左平移$\frac{π}{3}$個單位,再把所得各點的橫坐標縮短到原來的$\frac{1}{2}$倍 | |
B. | 向左平移$\frac{π}{3}$個單位,再把所得各點的橫坐標伸長到原來的2倍 | |
C. | 向左平移$\frac{π}{6}$個單位,再把所得各點的橫坐標縮短到原來的$\frac{1}{2}$倍 | |
D. | 向左平移$\frac{π}{6}$個單位,再把所得各點的橫坐標伸長到原來的2倍 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com