4.若正整數(shù)N除以正整數(shù)m后的余數(shù)為n,則記為N≡n(bmodm),例如10≡2(bmod4).下面程序框圖的算法源于我國古代聞名中外的《中國剩余定理》.執(zhí)行該程序框圖,則輸出的i等于( 。
A.4B.8C.16D.32

分析 由已知中的程序框圖可知:該程序的功能是利用循環(huán)結(jié)構(gòu)計算并輸出變量i的值,模擬程序的運行過程,分析循環(huán)中各變量值的變化情況,可得答案.

解答 解:模擬程序的運行,可得
n=11,i=1
i=2,n=13
不滿足條件“n=2(mod 3)“,i=4,n=17,
滿足條件“n=2(mod 3)“,不滿足條件“n=1(mod 5)“,i=8,n=25,
不滿足條件“n=2(mod 3)“,i=16,n=41,
滿足條件“n=2(mod 3)“,滿足條件“n=1(mod 5)”,退出循環(huán),輸出i的值為16.
故選:C.

點評 本題考查的知識點是程序框圖,當(dāng)循環(huán)的次數(shù)不多,或有規(guī)律時,常采用模擬循環(huán)的方法解答,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.在四棱錐S-ABCD中,已知SC⊥平面ABCD,底面ABCD是邊長為4$\sqrt{2}$的菱形,∠BCD=60°,SC=2,E為BC的中點,若點P在SE上移動,則△PCA面積的最小值為2$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.設(shè)定義在R上的函數(shù)f(x)=$\left\{\begin{array}{l}{\frac{1}{|x-2|},x≠2}\\{1,x=2}\end{array}\right.$,若關(guān)于x的方程f2(x)+af(x)+b=0有三個不同的實數(shù)解x1,x2,x3,且x1<x2<x3,則下列說法中錯誤的是( 。
A.x12+x22+x32=14B.1+a+b=0C.a2-4b=0D.x1+x3=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.四棱錐8條棱所在的直線能祖成8對異面直線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左焦點為F,過點F作雙曲線C的一條漸近線的垂線,垂足為H,點P在雙曲線上,且$\overrightarrow{FP}$=3$\overrightarrow{FH}$則雙曲線的離心率為( 。
A.$\sqrt{3}$B.2$\sqrt{3}$C.$\frac{\sqrt{13}}{2}$D.$\sqrt{13}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知$\overrightarrow{a\;}$、$\overrightarrow{b\;}$滿足$|{\overrightarrow{b\;}}|=2|{\overrightarrow{a\;}}|=2\overrightarrow{a\;}•\overrightarrow{b\;}=2$,$({\overrightarrow{c\;}}\right.-$$\left.{\overrightarrow{a\;}})•$$({\overrightarrow{c\;}}\right.-$$\left.{\overrightarrow{b\;}})$=0,則$\overrightarrow{c\;}•$$\overrightarrow{a\;}$的最大值為( 。
A.$\frac{3}{2}$B.$\frac{{1+\sqrt{3}}}{2}$C.$\frac{{2+\sqrt{3}}}{2}$D.$\frac{{4+\sqrt{3}}}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.函數(shù)f(x)=2x+3x的零點所在的一個區(qū)間(  )
A.(-2,-1)B.(-1,0)C.(0,1)D.(1,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.執(zhí)行如圖所示的程序框圖,若輸出s的值為16,則輸入n(n∈N)的最小值為( 。
A.11B.10C.9D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知函數(shù)$f(x)=\frac{1}{2}{x^2}-ax+(a-1)lnx$.
(1)當(dāng)a=2,求函數(shù)f(x)的圖象在點(1,f(1))處的切線方程;
(2)當(dāng)a>2時,求函數(shù)f(x)的單調(diào)區(qū)間.

查看答案和解析>>

同步練習(xí)冊答案