【題目】如圖,在等腰梯形ABCD中, ,E,F(xiàn)分別是底邊AB,CD的中點(diǎn),把四邊形BEFC沿直線EF折起,使得面BEFC⊥面ADFE,若動(dòng)點(diǎn)P∈平面ADFE,設(shè)PB,PC與平面ADFE所成的角分別為θ1 , θ2(θ1 , θ2均不為0).若θ12 , 則動(dòng)點(diǎn)P的軌跡為(

A.直線
B.橢圓
C.圓
D.拋物線

【答案】C
【解析】解:由題意,PE=BEcotθ1 , PF=CFcotθ2
∵BE= CF,θ12 ,
∴PE= PF.
以EF所在直線為x軸,EF的垂直平分線為y軸建立坐標(biāo)系,設(shè)E(﹣a,0),F(xiàn)(a,0),P(x,y),則
(x+a)2+y2= [(x﹣a)2+y2],
∴3x2+3y2+10ax+3a2=0,軌跡為圓.
故選:C.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】保險(xiǎn)公司統(tǒng)計(jì)的資料表明:居民住宅距最近消防站的距離(單位:千米)和火災(zāi)所造成的損失數(shù)額(單位:千元)有如下的統(tǒng)計(jì)資料:

(1)請(qǐng)用相關(guān)系數(shù)(精確到0.01)說(shuō)明之間具有線性相關(guān)關(guān)系;

(2)求關(guān)于的線性回歸方程(精確到0.01);

(3)若發(fā)生火災(zāi)的某居民區(qū)距最近的消防站10.0千米,請(qǐng)?jiān)u估一下火災(zāi)損失(精確到0.01).

參考數(shù)據(jù):,,,

參考公式:

回歸直線方程為,其中,為樣本平均值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在極坐標(biāo)系中,曲線C的方程為 ,點(diǎn) ,以極點(diǎn)為原點(diǎn),極軸為x軸的正半軸,建立平面直角坐標(biāo)系,兩坐標(biāo)系中取相同的長(zhǎng)度單位.
(1)求曲線C的直角坐標(biāo)方程及點(diǎn)R的直角坐標(biāo);
(2)設(shè)P為曲線C上一動(dòng)點(diǎn),以PR為對(duì)角線的矩形PQRS的一邊垂直于極軸,求矩形PQRS周長(zhǎng)的最小值及此時(shí)點(diǎn)P的直角坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),.

(1)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間和極值;

(2)若對(duì)于任意,都有成立,求實(shí)數(shù)的取值范圍;

(3)若,且,證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了解人們對(duì)某種食材營(yíng)養(yǎng)價(jià)值的認(rèn)識(shí)程度,某檔健康養(yǎng)生電視節(jié)目組織名營(yíng)養(yǎng)專(zhuān)家和名現(xiàn)場(chǎng)觀眾各組成一個(gè)評(píng)分小組,給食材的營(yíng)養(yǎng)價(jià)值打分(十分制).下面是兩個(gè)小組的打分?jǐn)?shù)據(jù):

第一小組

第二小組

(1)求第一小組數(shù)據(jù)的中位數(shù)與平均數(shù),用這兩個(gè)數(shù)字特征中的哪一種來(lái)描述第一小組打分的情況更合適?說(shuō)明你的理由.

(2)你能否判斷第一小組與第二小組哪一個(gè)更像是由營(yíng)養(yǎng)專(zhuān)家組成的嗎?請(qǐng)比較數(shù)字特征并說(shuō)明理由.

(3)節(jié)目組收集了烹飪?cè)撌巢牡募訜釙r(shí)間:(單位:)與其營(yíng)養(yǎng)成分保留百分比的有關(guān)數(shù)據(jù):

食材的加熱時(shí)間(單位:

營(yíng)養(yǎng)成分保留百分比

在答題卡上畫(huà)出散點(diǎn)圖,求關(guān)于的線性回歸方程(系數(shù)精確到),并說(shuō)明回歸方程中斜率的含義.

附注:參考數(shù)據(jù):,.

參考公式:回歸方程中斜率和截距的最小二乘估計(jì)公式分別為:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】質(zhì)檢部門(mén)對(duì)某工廠甲、乙兩個(gè)車(chē)間生產(chǎn)的個(gè)零件質(zhì)量進(jìn)行檢測(cè).甲、乙兩個(gè)車(chē)間的零件質(zhì)量(單位:克)分布的莖葉圖如圖所示.零件質(zhì)量不超過(guò)克的為合格.

(1)質(zhì)檢部門(mén)從甲車(chē)間個(gè)零件中隨機(jī)抽取件進(jìn)行檢測(cè),若至少件合格,檢測(cè)即可通過(guò),若至少件合格,檢測(cè)即為良好,求甲車(chē)間在這次檢測(cè)通過(guò)的條件下,獲得檢測(cè)良好的概率;

(2)若從甲、乙兩車(chē)間個(gè)零件中隨機(jī)抽取個(gè)零件,用表示乙車(chē)間的零件個(gè)數(shù),求的分布列與數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在直三棱柱中,,分別是的中點(diǎn),且.

1)求直線所成角的大小;

2)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在三棱錐中,平面平面,,,,的中點(diǎn).

(1)證明:平面;

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù),且),以為極點(diǎn),軸的正半軸為極軸,建立極坐標(biāo)系,直線的極坐標(biāo)方程為.

(1)若曲線只有一個(gè)公共點(diǎn),求的值.

(2)為曲線上的兩點(diǎn),且,求的面積最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案