如圖所示的流程圖,若輸入x的值為2,則輸出x的值為( 。
A、5B、7C、125D、127
考點:程序框圖
專題:常規(guī)題型,算法和程序框圖
分析:根據(jù)程序框圖,列出每次執(zhí)行循環(huán)體后的x的值,當滿足條件x>7時,退出循環(huán)體,輸出x的值.
解答: 解:根據(jù)程序框圖,第一次執(zhí)行循環(huán)體后x=3;
第二次執(zhí)行循環(huán)體后x=7;
第三次執(zhí)行循環(huán)體后x=127;滿足條件x>7,退出循環(huán)體,輸出x=127.
故選D.
點評:本題通過程序框圖考查了算法的三種結構,解決題目的關鍵是正確列出每次執(zhí)行循環(huán)體后得到的x的值,并會判斷何時退出循環(huán)體.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知拋物線y2=4x,圓F:(x-1)2+y2=1,過點F作直線l,自上而下順次與上述兩曲線交于點A,B,C,D(如圖所示),則|AB|•|CD|的值正確的是(  )
A、等于1B、最小值是1
C、等于4D、最大值是4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)y=sin(-2x+
π
3
)在區(qū)間[0,π]上的單調遞增區(qū)間為( 。
A、[
12
,
11π
12
]
B、[0,
12
]
C、[
π
6
,
3
]
D、[
3
,π]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=ex-2x+a有零點,則實數(shù)a的取值范圍是(  )
A、(-∞,2ln2-2]
B、[2ln2-2,+∞)
C、[2ln2,+∞)
D、[2ln2-2,2ln2]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知動點P的x坐標恒為0,y坐標恒為2,則動點P的軌跡是(  )
A、平面B、直線
C、不是平面也不是直線D、以上都不對

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下列關于統(tǒng)計的命題,真命題的序號為( 。
①某班級一共有52名學生,現(xiàn)將該班學生隨機編號,用系統(tǒng)抽樣的方法抽取一個容量為4的樣本,已知7號、33號、46號的同學在樣本中,則樣本中另一個同學編號為25號;
②數(shù)據(jù):1,2,3,3,4,5的平均數(shù)、眾數(shù)、中位數(shù)都相同;
③數(shù)據(jù):a,0,1,2,3,若該組數(shù)據(jù)的平均值為1,則標準差為2;
④根據(jù)具有線性相關關系的兩個變量的統(tǒng)計數(shù)據(jù),所得回歸直線方程y=a+bx中,b=2,
.
x
=1,
.
y
=3,則a=1.
A、①②B、②④C、①③D、③④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

先后拋擲一枚骰子,記向上的點數(shù)為a,b.事件A:點(a,b)落在圓x2+y2=12內;事件B:f(a)<0,其中函數(shù)f(x)=x2-(2t+1)x+t(t+1),t為常數(shù).已知P(B)>0
(1)求P(A);
(2)當t=
1
2
時,求P(B);
(3)如A、B同時發(fā)生的概率P(AB)=
1
36
,求t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖所示,正方形ADEF與梯形ABCD所在的平面互相垂直,AD⊥CD,
AB∥CD,CD=2AB=2AD.
(Ⅰ)求證:BC⊥BE;
(Ⅱ)求直線CE與平面BDE所成角的正切值;
(Ⅲ)在EC上找一點M,使得BM∥平面ADEF,請確定M點的位置,并給出證明.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某市規(guī)定,高三畢業(yè)生三年在校期間參加不少于80小時的社區(qū)服務才合格.教育部門在全市隨機抽取200位學生參加社區(qū)服務的數(shù)據(jù)為樣本,按時間段[75,80),[80,85),[85,90),[90,95),[95,100](單位:小時)進行統(tǒng)計,其頻率分布直方圖如圖所示.
(Ⅰ)求a的值;
(Ⅱ)若該市高三畢業(yè)生共有10萬人,利用抽取的樣本試估計全市畢業(yè)生社區(qū)服務不合格的人數(shù);
(Ⅲ)按時間段將不少于90小時的數(shù)據(jù)分為[90,95),[95,100]兩層,利用分層抽樣的方法從樣本中抽取8個數(shù)據(jù),再從這8個數(shù)據(jù)中隨機抽取2個,求抽取的兩個數(shù)據(jù)至少有一個在[95,100]的概率.

查看答案和解析>>

同步練習冊答案