18.不等式$\frac{4}{x-1}$<x-1的解集是(-1,1)∪(3,+∞).

分析 首先移項通分,化簡為整式不等式解之.

解答 解:不等式變形為$\frac{4}{x-1}-(x-1)<0$,所以$\frac{(x+1)(x-3)}{x-1}>$0,
等價于(x+1)(x-3)(x-1)>0,所以不等式的解集為(-1,1)∪(3,+∞);
故答案為:(-1,1)∪(3,+∞)

點評 本題考查了分式不等式的解法;注意:分式不等式不能盲目去分母.要等價轉(zhuǎn)化為整式不等式解答.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.如圖:A是單位圓與x軸正半軸的交點,點B在單位圓上且B(-$\frac{3}{5}$,$\frac{4}{5}$),P是劣弧$\widehat{AB}$上一點(不包括端點A、B),∠AOP=θ,∠BOP=α,$\overrightarrow{OQ}$=$\overrightarrow{OA}$+$\overrightarrow{OP}$,四邊形OAQP的面積為S.
(1)當(dāng)θ=$\frac{π}{6}$時,求cosα;
(2)求$\overrightarrow{OA}$•$\overrightarrow{OQ}$+S的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.下列四個命題:
①函數(shù)是其定義域到值域的映射;
②函數(shù)y=2x(x∈N)的圖象是一條直線;
③y=x與y=logaax(a>0且a≠1)表示同一個函數(shù);
④函數(shù)f(x)=ax+1-1的圖象過定點(-1,-1).
正確的個數(shù)為( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.函數(shù)f(x)=$\left\{{\begin{array}{l}{x(x+4),x≥0}\\{x(x-4),x<0}\end{array}}$,若f(x)=12,則x=-2或2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.函數(shù)f(x)=ln(3-x)(x+1)的定義域為( 。
A.[-1,3]B.(-1,3)C.(-∞,-3)∪(1,+∞)D.(-∞,-1)∪(3,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.設(shè)f(x)=ax2+(a-2)x-2(a∈R).
(I)解關(guān)于x的不等式f(x)≥0;
(II)若a>0,當(dāng)-1≤x≤1時,f(x)≤0時恒成立,求a的取值范圍.
(III)若當(dāng)-1<a<1時,f(x)>0時恒成立,求x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.?dāng)?shù)列{an}滿足a1=1,對任意的n∈N*都有an+1=a1+an+n,則$\frac{1}{a_1}$+$\frac{1}{a_2}$+…+$\frac{1}{{{a_{2016}}}}$=$\frac{4032}{2017}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知$\overrightarrow a$=(1,0),$\overrightarrow b$=(2,1),則|${\overrightarrow a$+3$\overrightarrow b}$|=$\sqrt{58}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.某林場今年造林10000畝,計劃以后每一年比前一年多造林10%,那么從明年算起第3年內(nèi)將造林13310畝.

查看答案和解析>>

同步練習(xí)冊答案