過拋物線y2=4x的焦點,作傾斜角為α的直線交拋物線于A,B兩點,且|AB|=
163
則α=
 
分析:分α=900時,易知不成立,當(dāng)α≠900時,設(shè)直線方程為:y=tanα(x-1),與拋物線方程聯(lián)立,再由韋達(dá)定理和拋物線過焦點的弦長公式求得其傾斜角.
解答:解:當(dāng)α=900時,|AB|=4不成立
當(dāng)α≠900時,設(shè)直線方程為:y=tanα(x-1)
與拋物線方程聯(lián)立得:(tanα)2x2-(2(tanα)2+4)x+(tanα)2=0
∴由韋達(dá)定理得:x1+x2=
2(tanα)2+4
(tanα)2

∴|AB|=x1+x2+p=
2(tanα)2+4
(tanα)2
+2=
16
3

∴tanα=±
3

∴α=600或1200
故答案為:600或1200
點評:本題主要考查直線與拋物線的位置及弦長公式,特別是拋物線過焦點的弦,要靈活地選擇公式,提高解題效率.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

傾斜角為
π
4
的直線過拋物線y2=4x的焦點且與拋物線交于A,B兩點,則|AB|=(  )
A、
13
B、8
2
C、16
D、8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

過拋物線y2=4x的焦點F引兩條互相垂直的直線AB、CD交拋物線于A、B、C、D四點.
(1)求當(dāng)|AB|+|CD|取最小值時直線AB、CD的傾斜角的大小
(2)求四邊形ACBD的面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

過拋物線y2=4x的焦點F的直線交該拋物線于A,B兩點,O為坐標(biāo)原點.若|AF|=3,則△AOB的面積為
3
2
2
3
2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

過拋物線y2=4x的焦點F的直線交拋物線于A、B兩點,點O是坐標(biāo)原點,若|AF|=5,則△AOB的面積為(  )
A、5
B、
5
2
C、
3
2
D、
17
8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

過拋物線y2=4x的焦點F的直線交拋物線于A、B兩點,A、B兩點在準(zhǔn)線l上的射影分別為M.N,則∠MFN=( 。

查看答案和解析>>

同步練習(xí)冊答案