1.下列給出的賦值語句中正確的是( 。
A.3=BB.A=B=2C.M=4D.x2+y2=1

分析 根據(jù)賦值語句的一般格式是:變量=表達式,賦值語句的左邊只能是變量名稱而不能是表達式,右邊可以是數(shù)也可以是表達式,進行判斷即可.

解答 解:根據(jù)題意,
對于A,左側(cè)為數(shù)字,不是賦值語句;
對于B,連等于,不是賦值語句;
對于C,是賦值語句,把4的值賦給變量M;
對于D,不是賦值語句,是等式.
故選:C.

點評 本題考查了賦值語句的判斷問題,解題的關(guān)鍵是理解賦值語句的特點,抓住賦值語句的特定形式,是基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

11.已知△OBC中,點A是線段BC的中點,點D是線段OB的一個靠近B的三等分點,設(shè)$\overrightarrow{AB}$=$\overrightarrow{a}$,$\overrightarrow{AO}$=$\overrightarrow$.
(1)用向量$\overrightarrow{a}$與$\overrightarrow$表示向量$\overrightarrow{OC},\overrightarrow{CD}$;
(2)若$\overrightarrow{OE}=\frac{3}{5}\overrightarrow{OA}$,判斷C、D、E是否共線,并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.已知正項數(shù)列{an}的前n項和為Sn,且滿足a1=2,anan+1=2(Sn+1)(n∈N*).
(1)求a2017的值;
(2)求數(shù)列{an}的通項公式;
(3)若數(shù)列{bn}滿足b1=1,bn=$\frac{1}{{{a_n}\sqrt{{a_{n-1}}}+{a_{n-1}}\sqrt{a_n}}}$(n≥2,n∈N*),求{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.已知向量$\overrightarrow{a}$,$\overrightarrow$滿足$\overrightarrow{a}$•($\overrightarrow{a}$+$\overrightarrow$)=5,且|$\overrightarrow{a}$|=2|$\overrightarrow$|=2,則向量$\overrightarrow{a}$,$\overrightarrow$的夾角為( 。
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{π}{4}$D.-$\frac{π}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.已知y=f(x)為偶函數(shù),且函數(shù)圖象經(jīng)過點(3,3),則f(-3)=3.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.在如圖所示的方格紙中,用直尺和圓規(guī)畫出下列向量:
(1)|$\overrightarrow{OA}$|=3,點A在點O正西方向;
(2)|$\overrightarrow{OB}$|=3$\sqrt{2}$,點B在點O北偏西45°方向;
(3)|$\overrightarrow{OC}$|=2,點C在點O南偏東60°方向.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

13.函數(shù)f(x)=$\sqrt{x+1}$+$\frac{{{{(1-x)}^0}}}{2-x}$的定義域為[-1,1)∪(1,2)∪(2,+∞)(用集合或區(qū)間表示).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.已知集合A={x|x2-8x+7<0},B={x|x2-2x-a2-2a<0}
(1)當a=4時,求A∩B;
(2)若A⊆B,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.如圖1:已知正方形ABCD的邊長是2,有一動點M從點B出發(fā)沿正方形的邊運動,路線是B→C→D→A.設(shè)點M經(jīng)過的路程為x,△ABM的面積為S.

(1)求函數(shù)S=f(x)的解析式及其定義域;
(2)在圖2中畫出函數(shù)S=f(x)的圖象.

查看答案和解析>>

同步練習冊答案