1.已知數(shù)列$\sqrt{2},\sqrt{5},2\sqrt{2},\sqrt{11}$,…則$2\sqrt{17}$是它的第23項(xiàng).

分析 通過(guò)數(shù)列的每一項(xiàng),得到數(shù)列的取值規(guī)律,得到數(shù)列的通項(xiàng)公式即可.

解答 解:2,5,8,11…是公差為3的等差數(shù)列通項(xiàng)公式為:2+3(n-1)=3n-1,
則數(shù)列$\sqrt{2},\sqrt{5},2\sqrt{2},\sqrt{11}$,…的通項(xiàng)公式為an=$\sqrt{3n-1}$,
解得$\sqrt{3n-1}$=2$\sqrt{17}$,
解的n=23,
故答案:23

點(diǎn)評(píng) 本題主要考查數(shù)列的概念及簡(jiǎn)單的表示,利用數(shù)列項(xiàng)的規(guī)律得到通項(xiàng)公式是解決本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.已知k>0,x,y滿足約束條件$\left\{{\begin{array}{l}{x≥2}\\{x+y≤4}\\{y≥k(x-4)}\end{array}}\right.$,若z=x-y的最大值為4,則k的取值范圍是(  )
A.(0,1)B.(0,1]C.(1,+∞)D.[1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.已知△ABC中,AB=10,AC=6,BC=8,點(diǎn)M為邊AB上任意一點(diǎn),則$\overrightarrow{CM}$•$\overrightarrow{CA}$+$\overrightarrow{CM}$•$\overrightarrow{CB}$的取值范圍是(  )
A.[0,100]B.[36,64]C.(36,100)D.[6,10]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.在等比數(shù)列{an}中,a2和a18為方程x2+15x+16=0的兩根,則a3a10a17等于( 。
A.-256B.64C.-64D.256

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.已知函數(shù)$f(x)=\frac{{{x^2}+a}}{e^x}({x∈R})$(e是自然對(duì)數(shù)的底數(shù),e≈2.71).
(1)當(dāng)a=-15時(shí),求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若f(x)在區(qū)間$[{\frac{1}{e},e}]$上是增函數(shù),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.已知等比數(shù)列{an}中,公比q>1,且a1+a4=9,a2a3=8,則$\frac{{{a_{2015}}+{a_{2016}}}}{{{a_{2013}}+{a_{2014}}}}$=4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.已知x>2,則函數(shù)$y=\frac{{{x^2}-4x+8}}{x-2}$的最小值是(  )
A.5B.4C.8D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.設(shè){an}是一個(gè)公差不為零的等差數(shù)列,其前n項(xiàng)和為Sn,已知S9=45,且a1,a2,a4 成等比數(shù)列.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)${b_n}=\frac{1}{{{a_n}{a_{n+1}}}}$,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.已知橢圓$\frac{x^2}{m}$+$\frac{y^2}{4}$=1的焦距為4,則該橢圓的長(zhǎng)軸長(zhǎng)為4$\sqrt{2}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案