分析 作出不等式對應(yīng)的平面區(qū)域,利用線性規(guī)劃的知識,確定目標(biāo)取最優(yōu)解的條件,即可求出a的取值范圍.
解答 解:先根據(jù)約束條件畫出可行域,如圖示:
z=y-ax,
將z的值轉(zhuǎn)化為直線z=y-ax在y軸上的截距,
當(dāng)a>0時,直線z=y-ax經(jīng)過點A(5,3)時,z最小,
必須直線z=y-ax的斜率大于直線x-y=2的斜率,
即a>1.
故答案為:(1,+∞).
點評 借助于平面區(qū)域特性,用幾何方法處理代數(shù)問題,體現(xiàn)了數(shù)形結(jié)合思想、化歸思想.線性規(guī)劃中的最優(yōu)解,通常是利用平移直線法確定.本題主要考查了簡單的線性規(guī)劃,以及利用幾何意義求最值,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $y=x-\frac{1}{x}$ | B. | y=lg|x| | C. | $y=\root{3}{x}$ | D. | $y=\sqrt{x^2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 相交 | B. | 相離 | C. | 外切 | D. | 內(nèi)切 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com