【題目】已知的三邊長(zhǎng)為a,b,c,有下列四個(gè)命題:
①以,,為邊長(zhǎng)的三角形一定存在;
②以,,為邊長(zhǎng)的三角形一定存在;
③以,,為邊長(zhǎng)的三角形一定存在;
④以,,為邊長(zhǎng)的三角形一定存在.
其中正確的是( )
A.①③B.②③C.②④D.①④
【答案】D
【解析】
①:利用三角形的三邊的性質(zhì),結(jié)合不等式的性質(zhì)進(jìn)行判斷即可;
②:通過(guò)舉特例進(jìn)行判斷即可;
③:通過(guò)舉特例進(jìn)行判斷即可;
④:根據(jù)三角形三邊的性質(zhì),結(jié)合絕對(duì)值的性質(zhì)進(jìn)行判斷即可.
①:設(shè)三角形三邊的關(guān)系為:,因此有,.
先比較與的大小關(guān)系,也就是比較與的大小關(guān)系,也就是
比較與的大小關(guān)系,顯然有,因此;
再比較與的大小關(guān)系,也就是比較與的大小關(guān)系,也就是比
較與的大小關(guān)系,即比較與的大小關(guān)系,顯然
,即,因此以,,為邊長(zhǎng)的三角形一定存
在;
②:當(dāng)時(shí),顯然有成立,因此這三邊能構(gòu)成三角
形,而,顯然不成立,故以,,
為邊長(zhǎng)的三角形不一定存在;
③:當(dāng)時(shí),顯然有成立,因此這三邊能構(gòu)成三角
形,而,顯然不成立,故以,
,為邊長(zhǎng)的三角形不一定存在;
④:設(shè)三角形三邊的關(guān)系為:,因此有,
,,
因此有,
,
,所以以,,
為邊長(zhǎng)的三角形一定存在.
故選:D
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列判斷正確的是( )
A.若隨機(jī)變量服從正態(tài)分布,,則;
B.已知直線平面,直線平面,則“”是“”的必要不充分條件;
C.若隨機(jī)變量服從二項(xiàng)分布:,則;
D.已知直線經(jīng)過(guò)點(diǎn),則的取值范圍是
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(本小題滿分12分)
已知函數(shù)是奇函數(shù),的定義域?yàn)?/span>.當(dāng)時(shí), .(e為自然對(duì)數(shù)的底數(shù)).
(1)若函數(shù)在區(qū)間上存在極值點(diǎn),求實(shí)數(shù)的取值范圍;
(2)如果當(dāng)x≥1時(shí),不等式恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某種植物感染病毒極易導(dǎo)致死亡,某生物研究所為此推出了一種抗病毒的制劑,現(xiàn)對(duì)20株感染了病毒的該植株樣本進(jìn)行噴霧試驗(yàn)測(cè)試藥效.測(cè)試結(jié)果分“植株死亡”和“植株存活”兩個(gè)結(jié)果進(jìn)行統(tǒng)計(jì);并對(duì)植株吸收制劑的量(單位:mg)進(jìn)行統(tǒng)計(jì).規(guī)定:植株吸收在6mg(包括6mg)以上為“足量”,否則為“不足量”.現(xiàn)對(duì)該20株植株樣本進(jìn)行統(tǒng)計(jì),其中 “植株存活”的13株,對(duì)制劑吸收量統(tǒng)計(jì)得下表.已知“植株存活”但“制劑吸收不足量”的植株共1株.
編號(hào) | 01 | 02 | 03 | 04 | 05 | 06 | 07 | 08 | 09 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
吸收量(mg) | 6 | 8 | 3 | 8 | 9 | 5 | 6 | 6 | 2 | 7 | 7 | 5 | 10 | 6 | 7 | 8 | 8 | 4 | 6 | 9 |
(1)完成以下列聯(lián)表,并判斷是否可以在犯錯(cuò)誤概率不超過(guò)1%的前提下,認(rèn)為“植株的存活”與“制劑吸收足量”有關(guān)?
吸收足量 | 吸收不足量 | 合計(jì) | |
植株存活 | 1 | ||
植株死亡 | |||
合計(jì) | 20 |
(2)①若在該樣本“吸收不足量”的植株中隨機(jī)抽取3株,記為“植株死亡”的數(shù)量,求得分布列和期望;
②將頻率視為概率,現(xiàn)在對(duì)已知某塊種植了1000株并感染了病毒的該植物試驗(yàn)田里進(jìn)行該藥品噴霧試驗(yàn),設(shè)“植株存活”且“吸收足量”的數(shù)量為隨機(jī)變量,求.
參考數(shù)據(jù):,其中
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
(1)若函數(shù)在x=1時(shí)取得極值,求實(shí)數(shù)a的值;
(2)當(dāng)0<a<1時(shí),求零點(diǎn)的個(gè)數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓C:()的兩焦點(diǎn)與短軸的一個(gè)端點(diǎn)的連線構(gòu)成等腰直角三角形,直線與以橢圓C的右焦點(diǎn)為圓心,以橢圓的半長(zhǎng)軸長(zhǎng)為半徑的圓相切.
(1)求橢圓C的方程;
(2)設(shè)P為橢圓C上一點(diǎn),若過(guò)點(diǎn)的直線l與橢圓C相交于不同的兩點(diǎn)S和T,滿足(O為坐標(biāo)原點(diǎn)),求實(shí)數(shù)t的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列說(shuō)法:
①對(duì)于獨(dú)立性檢驗(yàn),的值越大,說(shuō)明兩事件相關(guān)程度越大;
②以模型去擬合一組數(shù)據(jù)時(shí),為了求出回歸方程,設(shè),將其變換后得到線性方程,則,的值分別是和0.3;
③已知隨機(jī)變量,若,則()的值為;
④通過(guò)回歸直線及回歸系數(shù),可以精確反映變量的取值和變化趨勢(shì).
其中錯(cuò)誤的選項(xiàng)是( )
A.①B.②C.③D.④
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】關(guān)于函數(shù)有下述四個(gè)結(jié)論:
①函數(shù)的圖象把圓的面積兩等分
②是周期為的函數(shù)
③函數(shù)在區(qū)間上有個(gè)零點(diǎn)
④函數(shù)在區(qū)間上單調(diào)遞減
其中所有不正確結(jié)論的編號(hào)是( )
A.①③④B.②③C.①④D.①③
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】冠狀病毒是一個(gè)大型病毒家族,已知可引起感冒以及中東呼吸綜合征(MERS)和嚴(yán)重急性呼吸綜合征(SARS)等較嚴(yán)重疾。衲瓿霈F(xiàn)的新型冠狀病毒(nCoV)是以前從未在人體中發(fā)現(xiàn)的冠狀病毒新毒株.人感染了新型冠狀病毒后常見(jiàn)體征有呼吸道癥狀、發(fā)熱、咳嗽、氣促和呼吸困難等.在較嚴(yán)重病例中,感染可導(dǎo)致肺炎、嚴(yán)重急性呼吸綜合征、腎衰竭,甚至死亡.應(yīng)國(guó)務(wù)院要求,黑龍江某醫(yī)院選派醫(yī)生參加援鄂醫(yī)療,該院呼吸內(nèi)科有3名男醫(yī)生,2名女醫(yī)生,其中李亮(男)為科室主任;該院病毒感染科有2名男醫(yī)生,2名女醫(yī)生,其中張雅(女)為科室主任,現(xiàn)在院方?jīng)Q定從兩科室中共選4人參加援鄂醫(yī)療(最后結(jié)果用數(shù)字表達(dá)).
(1)若至多有1名主任參加,有多少種派法?
(2)若呼吸內(nèi)科至少2名醫(yī)生參加,有多少種派法?
(3)若至少有1名主任參加,且有女醫(yī)生參加,有多少種派法?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com