【題目】某射手射擊1次,擊中目標(biāo)的概率是0.9,他連續(xù)射擊4次,且各次射擊是否擊中目標(biāo)相互之間沒有影響,有下列結(jié)論:
①他第3次擊中目標(biāo)的概率是0.9;
②他恰好擊中目標(biāo)3次的概率是;
③他至少擊中目標(biāo)1次的概率是;
④他至多擊中目標(biāo)1次的概率是
其中正確結(jié)論的序號(hào)是( )
A.①②③B.①③
C.①④D.①②
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓 的離心率為,橢圓上的點(diǎn)到左焦點(diǎn)的最小值為.
(1)求橢圓的方程;
(2)已知直線與軸交于點(diǎn),過點(diǎn)的直線與交于、兩點(diǎn),點(diǎn)為直線上任意一點(diǎn),設(shè)直線與直線交于點(diǎn),記,,的斜率分別為,,,則是否存在實(shí)數(shù),使得恒成立?若是,請(qǐng)求出的值;若不是,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】隨著城市地鐵建設(shè)的持續(xù)推進(jìn),市民的出行也越來越便利.根據(jù)大數(shù)據(jù)統(tǒng)計(jì),某條地鐵線路運(yùn)行時(shí),發(fā)車時(shí)間間隔t(單位:分鐘)滿足:4≤t≤15,N,平均每趟地鐵的載客人數(shù)p(t)(單位:人)與發(fā)車時(shí)間間隔t近似地滿足下列函數(shù)關(guān)系:,其中.
(1)若平均每趟地鐵的載客人數(shù)不超過1500人,試求發(fā)車時(shí)間間隔t的值.
(2)若平均每趟地鐵每分鐘的凈收益為(單位:元),問當(dāng)發(fā)車時(shí)間間隔t為多少時(shí),平均每趟地鐵每分鐘的凈收益最大?井求出最大凈收益.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校在學(xué)校內(nèi)招募了名男志愿者和名女志愿者,將這名志愿者的身高編成如莖葉圖所示(單位:),若身高在以上(包括)定義為“高個(gè)子”,身高在以下(不包括)定義為“非高個(gè)子”。
(Ⅰ)根據(jù)數(shù)據(jù)分別寫出男、女兩組身高的中位數(shù);
(Ⅱ)如果用分層抽樣的方法從“高個(gè)子”和“非高個(gè)子”中抽取5人,則各抽幾人?
(Ⅲ)在(Ⅱ)的基礎(chǔ)上,從這人中選人,那么至少有一人是“高個(gè)子”的概率是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)
(1)當(dāng)時(shí),求函數(shù)在點(diǎn)處的切線方程;
(2)若函數(shù)存在兩個(gè)極值點(diǎn),
①求實(shí)數(shù)的范圍;
②證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖, 中,,,分別為,邊的中點(diǎn),以為折痕把折起,使點(diǎn)到達(dá)點(diǎn)的位置,且.
(1)證明:平面;
(2)求平面與平面所成銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】東方商店欲購進(jìn)某種食品(保質(zhì)期兩天),此商店每?jī)商熨忂M(jìn)該食品一次(購進(jìn)時(shí),該食品為剛生產(chǎn)的).根據(jù)市場(chǎng)調(diào)查,該食品每份進(jìn)價(jià)元,售價(jià)元,如果兩天內(nèi)無法售出,則食品過期作廢,且兩天內(nèi)的銷售情況互不影響,為了了解市場(chǎng)的需求情況,現(xiàn)統(tǒng)計(jì)該產(chǎn)品在本地區(qū)天的銷售量如下表:
(視樣本頻率為概率)
(1)根據(jù)該產(chǎn)品天的銷售量統(tǒng)計(jì)表,記兩天中一共銷售該食品份數(shù)為,求的分布列與期望
(2)以兩天內(nèi)該產(chǎn)品所獲得的利潤(rùn)期望為決策依據(jù),東方商店一次性購進(jìn)或份,哪一種得到的利潤(rùn)更大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】折紙與數(shù)學(xué)有著千絲萬縷的聯(lián)系,吸引了人們的廣泛興趣.因紙的長(zhǎng)寬比稱為白銀分割比例,故紙有一個(gè)白銀矩形的美稱.現(xiàn)有一張如圖1所示的紙,.
分別為的中點(diǎn),將其按折痕折起(如圖2),使得四點(diǎn)重合,重合后的點(diǎn)記為,折得到一個(gè)如圖3所示的三棱錐.記為的中點(diǎn),在中,為邊上的高.
(1)求證:平面;
(2)若分別是棱上的動(dòng)點(diǎn),且.當(dāng)三棱錐的體積最大時(shí),求平面與平面所成銳二面角的余弦值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com