已知函數(shù).
(Ⅰ)當(dāng)時,求曲線在點(diǎn)處的切線方程;
(Ⅱ)當(dāng)時,若在區(qū)間上的最小值為,求的取值范圍.
(Ⅰ);(Ⅱ).
解析試題分析:(Ⅰ)將代入得:,利用導(dǎo)數(shù)便可求得曲線在點(diǎn)處的切線方程;
(Ⅱ).
令得:.因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/e7/8/jr12z1.png" style="vertical-align:middle;" />,所以.下面就結(jié)合圖象分情況求出在區(qū)間上的最小值,再由其最小值為,求出的取值范圍.
試題解析:(Ⅰ)當(dāng)時,,
此時:,于是:切線方程為.
(Ⅱ)
令得:
當(dāng)即時,,函數(shù)在上單調(diào)遞增,于是滿足條件
當(dāng)即時,函數(shù)在上單調(diào)遞減,在上單調(diào)遞增,于是不滿足條件.
當(dāng)即時,函數(shù)在上單調(diào)遞減,此時不滿足條件.
綜上所述:實(shí)數(shù)的取值范圍是.
考點(diǎn):1、導(dǎo)數(shù)的應(yīng)用;2、解不等式.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù).
(1)求的單調(diào)區(qū)間及最大值;
(2)恒成立,試求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù).
(1)當(dāng),時,求函數(shù)的最大值;
(2)令,其圖象上存在一點(diǎn),使此處切線的斜率,求實(shí)數(shù)的取值范圍;
(3)當(dāng),時,方程有唯一實(shí)數(shù)解,求正數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù),.
(Ⅰ)求函數(shù)的單調(diào)遞增區(qū)間;
(Ⅱ)設(shè),,,為函數(shù)的圖象上任意不同兩點(diǎn),若過,兩點(diǎn)的直線的斜率恒大于,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)在上是增函數(shù),
(1)求實(shí)數(shù)的取值集合;
(2)當(dāng)取值集合中的最小值時,定義數(shù)列;滿足且,,求數(shù)列的通項(xiàng)公式;
(3)若,數(shù)列的前項(xiàng)和為,求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù)
(Ⅰ)設(shè),,,證明:在區(qū)間內(nèi)存在唯一的零點(diǎn);
(Ⅱ)設(shè),若對任意,均有,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù),,其中為常數(shù),,函數(shù)和的圖像在它們與坐標(biāo)軸交點(diǎn)處的切線分別為、,且.
(1)求常數(shù)的值及、的方程;
(2)求證:對于函數(shù)和公共定義域內(nèi)的任意實(shí)數(shù),有;
(3)若存在使不等式成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com